We demonstrate that the Plancherel transform for Type-I groups provides one with a natural, unified perspective for the generalized continuous wavelet transform, on the one hand, and for a class of Wigner functions, on the other. We first prove that a Plancherel inversion formula, well known for Bruhat functions on the group, holds for a much larger class of functions. This result allows us to view the wavelet transform as essentially the inverse Plancherel transform. The wavelet transform of a signal is an L 2 -function on an appropriately chosen group while the Wigner function is defined on a coadjoint orbit of the group and serves as an alternative characterization of the signal, which is often used in practical applications. The Plancherel transform maps L 2 -functions on a group unitarily to fields of Hilbert-Schmidt operators, indexed by unitary irreducible representations of the group. The wavelet transform can essentially be looked upon as a restricted inverse Plancherel transform, while Wigner functions are modified Fourier transforms of inverse Plancherel transforms, usually restricted to a subset of the unitary dual of the group. Some known results on both Wigner functions and wavelet transforms, appearing in the literature from very different perspectives, are naturally unified within our approach. Explicit computations on a number of groups illustrate the theory.
Following a general method proposed earlier, we construct here Wigner functions defined on coadjoint orbits of a class of semidirect product groups.The groups in question are such that their unitary duals consist purely of representations from the discrete series and each unitary irreducible representation is associated with a coadjoint orbit. The set of all coadjoint orbits (hence UIRs) is finite and their union is dense in the dual of the Lie algebra. The simple structure of the groups and the orbits enables us to compute the various quantities appearing in the definition of the Wigner function explicitly. Possible use of the Wigner functions so constructed, in image analysis and quantum optical measurements, is suggested.1 Based in part on a thesis submitted by one of us (AEK) to Concordia University.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.