We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real line and the group of analytic functions from the real line to the Euclidean group in three dimensions. This group provides transformations between all inertial and non-inertial reference frames and contains the Galilei group as a subgroup. We construct a certain class of unitary representations of the Galilean line group and show that these representations determine the structure of quantum mechanics in non-inertial reference frames. Our representations of the Galilean line group contain the usual unitary projective representations of the Galilei group, but have a more intricate cocycle structure. The transformation formula for the Hamiltonian under the Galilean line group shows that in a non-inertial reference frame it acquires a fictitious potential energy term that is proportional to the inertial mass, suggesting the equivalence of inertial mass and gravitational mass in quantum mechanics.
Structural phenomena in nuclei, from shell structure and clustering to superfluidity and collective rotations and vibrations, reflect emergent degrees of freedom. Ab initio theory describes nuclei directly from a fully microscopic formulation. We can therefore look to ab initio theory as a means of exploring the emergence of effective degrees of freedom in nuclei. For the illustrative case of emergent rotational bands in the Be isotopes, we establish an understanding of the underlying oscillator space and angular momentum (orbital and spin) structure. We consider no-core configuration interaction (NCCI) calculations for 7,9,11 Be with the Dae-jeon16 internucleon interaction. Although shell model or rotational degrees of freedom are not assumed in the ab initio theory, the NCCI results are suggestive of the emergence of effective shell model degrees of freedom (0 ω and 2 ω excitations) and LS-scheme rotational degrees of freedom, consistent with an Elliott-Wilsdon SU(3) description. These results provide some basic insight into the connection between emergent effective collective rotational and shell model degrees of freedom in these light nuclei and the underlying ab initio microscopic description. arXiv:1912.00083v1 [nucl-th]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.