We report an on-chip integrated metal graphene–silicon plasmonic Schottky photodetector with 85 mA/W responsivity at 1.55 μm and 7% internal quantum efficiency. This is one order of magnitude higher than metal–silicon Schottky photodetectors operated in the same conditions. At a reverse bias of 3 V, we achieve avalanche multiplication, with 0.37A/W responsivity and avalanche photogain ∼2. This paves the way to graphene integrated silicon photonics.
Graphene is used as the thinnest possible spacer between gold nanoparticles and a gold substrate. This creates a robust, repeatable, and stable subnanometer gap for massive plasmonic field enhancements. White light spectroscopy of single 80 nm gold nanoparticles reveals plasmonic coupling between the particle and its image within the gold substrate. While for a single graphene layer, spectral doublets from coupled dimer modes are observed shifted into the near-infrared, these disappear for increasing numbers of layers. These doublets arise from charger-transfer-sensitive gap plasmons, allowing optical measurement to access out-of-plane conductivity in such layered systems. Gating the graphene can thus directly produce plasmon tuning.
We present flexible photodetectors (PDs) for visible wavelengths fabricated by stacking centimeter-scale chemical vapor deposited (CVD) single layer graphene (SLG) and single layer CVD MoS2, both wet transferred onto a flexible polyethylene terephthalate substrate. The operation mechanism relies on injection of photoexcited electrons from MoS2 to the SLG channel. The external responsivity is 45.5A/W and the internal 570A/W at 642 nm. This is at least 2 orders of magnitude higher than bulk-semiconductor flexible membranes. The photoconductive gain is up to 4 × 105. The photocurrent is in the 0.1–100 μA range. The devices are semitransparent, with 8% absorptance at 642 nm, and are stable upon bending to a curvature of 1.4 cm. These capabilities and the low-voltage operation (<1 V) make them attractive for wearable applications.
Graphene's high mobility and Fermi velocity, combined with its constant light absorption in the visible to far-infrared range, make it an ideal material to fabricate high-speed and ultrabroadband photodetectors. However, the precise mechanism of photodetection is still debated. Here, we report wavelength and polarization-dependent measurements of metal−graphene−metal photodetectors. This allows us to quantify and control the relative contributions of both photothermo-and photoelectric effects, both adding to the overall photoresponse. This paves the way for a more efficient photodetector design for ultrafast operating speeds.KEYWORDS: Graphene, photodetectors, Raman spectroscopy, photoresponse, optoelectronics T he unique optical and electronic properties of graphene make it ideal for photonics and optoelectronics. 1 A variety of prototype devices have already been demonstrated, such as transparent electrodes in displays 2 and photovoltaic modules, 3 optical modulators, 4 plasmonic devices, 4−9 microcavities, 10,11 and ultrafast lasers. 12 Among these, a significant effort is being devoted to photodetectors (PDs). 6,10,11,13−25 Various photodetection schemes and architectures have been proposed to date. The simplest configuration is the metal− graphene−metal (MGM) PD, in which graphene is contacted with metal electrodes as the source and drain. 13−18 These PDs can be combined with metal nanostructures enabling local surface plasmons and increased absorption, realizing an enhancement in responsivity (i.e., the ratio of the lightgenerated electrical current to the incident light power). 6,26 Microcavity based PDs were also used, with increased light absorption at the cavity resonance frequency, again achieving an increase in responsivity. 10,11 Another scheme is the integration of graphene with a waveguide to increase the effective interaction length with light. 25,27 Hybrid approaches employ semiconducting nanodots as light-absorbing media. 22 In this case, light excites electron−hole (e−h) pairs in the nanodots; the electrons are trapped in the nanodot, while the holes are transferred to graphene, thus effectively gating it. 22 Under applied drain−source bias, this results in a shift in the Dirac point, thus a modulation of the drain−source current. 22 Due to the long trapping time of the electrons within the dot, the transferred holes can cycle many times through the phototransistor before relaxation and e−h recombination. This gives a photoconductive gain; i.e., one absorbed photon effectively results in an electrical current of several electrons. Responsivities >10 7 A/W were reported, 22 but with a millisecond time scale, not suitable for, e.g., high-speed optical communications. Devices were also fabricated for detection of THz light. 28,29 In this low energy range, Pauli blocking forbids the direct excitation of e−h pairs due to finite doping. Instead, an antenna coupled to source and gate of the device excites plasma waves within the channel. These are rectified, leading to a detectable dc out...
Articles you may be interested inEfficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides Appl. Phys. Lett. 96, 243306 (2010); 10.1063/1.3453759 Hybrid organic/inorganic nanocomposite as a quasi-one-dimensional semiconductor under ambient conditions Exciton switching and Peierls transitions in hybrid inorganic-organic self-assembled quantum wells Appl. Phys. Lett. 95, 173305 (2009); 10.1063/1.3257725In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells Appl. Phys. Lett. 95, 033309 (2009);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.