The study of T regulatory cells (T reg cells) has been limited by the lack of specific surface markers and an inability to define mechanisms of suppression. We show that the expression of CD39/ENTPD1 in concert with CD73/ecto-5′-nucleotidase distinguishes CD4+/CD25+/Foxp3+ T reg cells from other T cells. These ectoenzymes generate pericellular adenosine from extracellular nucleotides. The coordinated expression of CD39/CD73 on T reg cells and the adenosine A2A receptor on activated T effector cells generates immunosuppressive loops, indicating roles in the inhibitory function of T reg cells. Consequently, T reg cells from Cd39-null mice show impaired suppressive properties in vitro and fail to block allograft rejection in vivo. We conclude that CD39 and CD73 are surface markers of T reg cells that impart a specific biochemical signature characterized by adenosine generation that has functional relevance for cellular immunoregulation.
Background-Bilirubin, a natural product of heme catabolism by heme oxygenases, was considered a toxic waste product until 1987, when its antioxidant potential was recognized. On the basis of observations that oxidative stress is a potent trigger in vascular proliferative responses, that heme oxygenase-1 is antiatherogenic, and that several studies now show that individuals with high-normal or supranormal levels of plasma bilirubin have a lesser incidence of atherosclerosisrelated diseases, we hypothesized that bilirubin would have salutary effects on preventing intimal hyperplasia after balloon injury. Methods and Results-We found less balloon injury-induced neointima formation in hyperbilirubinemic Gunn rats and in wild-type rats treated with biliverdin, the precursor of bilirubin, than in controls. In vitro, bilirubin and biliverdin inhibited serum-driven smooth muscle cell cycle progression at the G 1 phase via inhibition of the mitogen-activated protein kinase signal transduction pathways and inhibition of phosphorylation of the retinoblastoma tumor suppressor protein. Conclusions-Bilirubin and biliverdin might be potential therapeutics in vascular proliferative disorders. (Circulation.
We have recently shown that the natural bile pigment bilirubin has antiproliferative effects on vascular smooth muscle cells (VSMCs). Bilirubin is the end product of heme catabolism mediated by heme oxygenases and has for decades been considered a toxic waste product of our bodies. However, 14 separate studies and a meta-analysis have documented an inverse correlation between atherosclerosis and the levels of bilirubin in normal individuals. Having high normal or supranormal levels of bilirubin is associated with less atherosclerotic-type disease as compared with that in individuals with low normal levels of bilirubin. This combined with experimental data showing anti-atherosclerotic properties of the enzyme heme oxygenase-1 encouraged us to hypothesize that bilirubin and its precursor biliverdin, would act to ameliorate components of atherosclerosis, in a manner similar to what has been shown with HO-1. Both did so in an animal model of restenosis in which vascular smooth muscle cell proliferation leads to intimal proliferation and causes narrowing of the vessels. We also analyzed the antiproliferative effects of the bile pigments in an in vitro system where bilirubin/biliverdin caused p53 dependent cell cycle arrest by hypophosphorylation of the retinoblastoma tumor suppressor protein in growth factor stimulated VSMCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.