Carvone (p-mentha-6,8-dien-2-one) is a monoterpene ketone found as the main active component of various essential oils. It is obtained by distillation and occurs naturally as the enantiomers (+)- and (-)-carvone. Our group have shown that the in vivo antinociceptive activity of (-)-carvone is impaired with decreased nerve excitability. To better characterize the neuropharmacology of such a monoterpene, we investigated the profile of several carvone analogues to establish a structure-function relationship related to the compound action potential (CAP) inhibitory effect. We performed ex vivo assays to evaluate the effects of (+)- and (-)-carvone, carvacrol, (-)-carveol, and limonene on CAP characteristics using a modified single sucrose-gap method. Our results demonstrated that (-)-carvone was less potent (IC(50)=10.7+/-0.07 mM) in reducing nerve excitability than its enantiomer, (+)-carvone (IC(50)=8.7+/-0.1mM), although they shared a similar mode of action, since their effects were partially extinguished by nerve washing and also by reduction of depolarization velocity, probably as a result of voltage-gated sodium channel blockades. In a structure-activity relationship study, we demonstrated that hydroxyl groups in the (-)-carveol and carvacrol molecules enhanced the CAP blocking-effect, while the absence of oxygen moiety in (+)-limonene resulted in the effect being almost abolished. Therefore, inhibition of CAP conduction in peripheral nerves by monoterpenes could expand our understanding concerning the pharmacology of such natural bioactive compounds. Moreover, activation or inhibition of nerve excitability with these tested monoterpenes can be achieved by altering their chemical structures, and this can lead to further implications for target-directed drug design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.