Summary Background Combination antiretroviral therapy has led to significant increases in survival and quality of life, but at a population-level the effect on life expectancy is not well understood. Our objective was to compare changes in mortality and life expectancy among HIV-positive individuals on combination antiretroviral therapy. Methods The Antiretroviral Therapy Cohort Collaboration is a multinational collaboration of HIV cohort studies in Europe and North America. Patients were included in this analysis if they were aged 16 years or over and antiretroviral-naive when initiating combination therapy. We constructed abridged life tables to estimate life expectancies for individuals on combination antiretroviral therapy in 1996–99, 2000–02, and 2003–05, stratified by sex, baseline CD4 cell count, and history of injecting drug use. The average number of years remaining to be lived by those treated with combination antiretroviral therapy at 20 and 35 years of age was estimated. Potential years of life lost from 20 to 64 years of age and crude death rates were also calculated. Findings 18 587, 13 914, and 10 854 eligible patients initiated combination antiretroviral therapy in 1996–99, 2000–02, and 2003–05, respectively. 2056 (4·7%) deaths were observed during the study period, with crude death rates decreasing from 16·3 deaths per 1000 person-years in 1996–99 to 10·0 deaths per 1000 person-years in 2003–05. Potential years of life lost per 1000 person-years also decreased over the same time, from 366 to 189 years. Life expectancy at age 20 years increased from 36·1 (SE 0·6) years to 49·4 (0·5) years. Women had higher life expectancies than men. Patients with presumed transmission via injecting drug use had lower life expectancies than those from other transmission groups (32·6 [1·1] years vs 44·7 [0·3] years in 2003–05). Life expectancy was lower in patients with lower baseline CD4 counts than in those with higher baseline counts (32·4 [1·1] years for CD4 cell counts below 100 cells per μL vs 50·4 [0·4] years for counts of 200 cells per μL or more). Interpretation Life expectancy in HIV-infected patients treated with combination antiretroviral therapy increased between 1996 and 2005, although there is considerable variability in subgroups of patients. However, the average number of years remaining to be lived at age 20 years was about two-thirds of that in the general population in these countries.
Highly active antiretroviral therapy (HAART) results in potent and durable suppression of HIV-1 viremia. However, HIV-1 replication resumes if therapy is interrupted. Although it is generally believed that active replication has been halted in individuals on HAART, immune activation and inflammation continue at abnormal levels, suggesting continued, low-level viral replication. To assess whether active replication might be driving immune activation in HAART, we examined the impact of treatment intensification with the integrase inhibitor raltegravir on viral complementary DNA and immune activation parameters. In the presence of raltegravir, linear HIV-1 cDNA is prevented from integrating into chromatin and is subsequently converted to episomal cDNAs. Raltegravir intensification of a three-drug suppressive HAART regimen resulted in a specific and transient increase in episomal DNAs in a large percentage of HAART-suppressed subjects. Furthermore, in subjects with these episomal DNAs, immune activation was higher at baseline and was subsequently normalized after raltegravir intensification. These results suggest that, despite suppressive HAART, active replication persists in some infected individuals and drives immune activation. The ability of raltegravir intensification to perturb the reservoir that supports active replication has implications for therapeutic strategies aimed at achieving viral eradication.
We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.
Because pathogens are powerful selective agents, host-cell surface molecules used by pathogens as identification signals can reveal the signature of selection. Most of them are oligosaccharides, synthesized by glycosyltransferases. One known example is balancing selection shaping ABO evolution as a consequence of both, A and B antigens being recognized as receptors by some pathogens, and anti-A and/or anti-B natural antibodies produced by hosts conferring protection against the numerous infectious agents expressing A and B motifs. These antigens can also be found in tissues other than blood if there is activity of another enzyme, FUT2, a fucosyltransferase responsible for ABO biosynthesis in body fluids. Homozygotes for null variants at this locus present the nonsecretor phenotype (se), because they cannot express ABO antigens in secretions. Multiple independent mutations have been shown to be responsible for the nonsecretor phenotype, which is coexisting with the secretor phenotype in most populations. In this study, we have resequenced the coding region of FUT2 in 732 individuals from 39 worldwide human populations. We report a complex pattern of natural selection acting on the gene. Although frequencies of secretor and nonsecretor phenotypes are similar in different populations, the point mutations at the base of the phenotypes are different, with some variants showing a long history of balancing selection among Eurasian and African populations, and one recent variant showing a fast spread in East Asia, likely due to positive selection. Thus, a convergent phenotype composition has been achieved through different mutations with different evolutionary histories.
Objective-To estimate the effect of combined antiretroviral therapy (cART) on mortality among HIV-infected individuals after appropriate adjustment for time-varying confounding by indication.Design-A collaboration of 12 prospective cohort studies from Europe and the United States (the HIV-CAUSAL Collaboration) that includes 62,760 HIV-infected, therapy-naïve individuals followed for an average of 3.3 years. Inverse probability weighting of marginal structural models was used to adjust for measured confounding by indication. Conclusions-We estimated that cART halved the average mortality rate in HIV-infected individuals. The mortality reduction was greater in those with worse prognosis at the start of follow-up. Results
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.