Circulating glucose levels are tightly regulated. To identify novel glycemic loci, we performed meta-analyses of 21 genome-wide associations studies informative for fasting glucose (FG), fasting insulin (FI) and indices of β-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 non-diabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with FG/HOMA-B and two associated with FI/HOMA-IR. These include nine new FG loci (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and FAM148B) and one influencing FI/HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB/TMEM195 with type 2 diabetes (T2D). Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify T2D risk loci, as well as loci that elevate FG modestly, but do not cause overt diabetes.
Several new risk factors for Crohn's disease have been identified in recent genome-wide association studies. To advance gene discovery further we have combined the data from three studies (a total of 3,230 cases and 4,829 controls) and performed replication in 3,664 independent cases with a mixture of population-based and family-based controls. The results strongly confirm 11 previously reported loci and provide genome-wide significant evidence for 21 new loci, including the regions containing STAT3, JAK2, ICOSLG, CDKAL1, and ITLN1. The expanded molecular understanding of the basis of disease offers promise for informed therapeutic development. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptThe first genome-wide association studies (GWAS) have identified many common variants associated with complex diseases, and have rapidly expanded our knowledge of the genetic architecture of these traits. Progress in Crohn's disease (CD), a common idiopathic inflammatory bowel disease (IBD) with high heritability (λ s ∼ 20-35), has been especially striking, with recent GWAS publications increasing the number of confirmed associated loci from two to more than ten 1 . The results have identified new pathogenic mechanisms of IBD and promise to advance fundamentally our understanding of CD biology. These recent discoveries highlight, for instance, the key importance of autophagy and innate immunity 2-5 as determinants of the dysregulated host-bacterial interactions implicated in disease pathogenesis. Furthermore, genetic associations have been shown to be shared between CD and other auto-inflammatory conditions -for example, IL23R variants 6 are also associated with psoriasis 7 and ankylosing spondylitis 8 , and PTPN2 variants with type 1 diabetes 3,5 . As in other complex diseases, restricted sample sizes have resulted in early CD studies focusing on only the strongest effects, which turn out to explain only a fraction of the heritability of disease.We recently published three separate GWA scans for CD in European-derived populationsthe details of which are shown in Table 1 4,5,9 . Motivated by the need for larger datasets to improve power to detect loci of modest effect, we carried out a genome-wide meta-analysis from our three CD scans. These analyses, together with a replication study in an equivalently sized, independent panel, have enabled us to identify at genome-wide levels of significance 21 novel Crohn's disease susceptibility genes and loci. This brings the total number of independent loci conclusively associated with Crohn's disease to more than 30 and provides unprecedented insight into both CD pathogenesis as well as the general genetic architecture of a multifactorial disease. Results Meta-analysis of three genome-wide association scansThe combined GWAS study samples (Table 1) consisted of 3,230 cases and 4,829 controls, all of European descent. While the individual scans did identify new risk factors, they were only well-powered to discover common alleles with odds-ratios (ORs) a...
BACKGROUND Susceptibility to asthma is influenced by genes and environment; implicated genes may indicate pathways for therapeutic intervention. Genetic risk factors may be useful in identifying subtypes of asthma and determining whether intermediate phenotypes, such as elevation of the total serum IgE level, are causally linked to disease. METHODS We carried out a genomewide association study by genotyping 10,365 persons with physician-diagnosed asthma and 16,110 unaffected persons, all of whom were matched for ancestry. We used random-effects pooled analysis to test for association in the overall study population and in subgroups of subjects with childhood-onset asthma (defined as asthma developing before 16 years of age), later-onset asthma, severe asthma, and occupational asthma. RESULTS We observed associations of genomewide significance between asthma and the following single-nucleotide polymorphisms: rs3771166 on chromosome 2, implicating IL1RL1/IL18R1 (P =3×10−9); rs9273349 on chromosome 6, implicating HLA-DQ (P = 7×10−14); rs1342326 on chromosome 9, flanking IL33 (P = 9×10−10); rs744910 on chromosome 15 in SMAD3 (P = 4×10−9); and rs2284033 on chromosome 22 in IL2RB (P = 1.1×10−8). Association with the ORMDL3/GSDMB locus on chromosome 17q21 was specific to childhood-onset disease (rs2305480, P = 6×10−23). Only HLA-DR showed a significant genomewide association with the total serum IgE concentration, and loci strongly associated with IgE levels were not associated with asthma. CONCLUSIONS Asthma is genetically heterogeneous. A few common alleles are associated with disease risk at all ages. Implicated genes suggest a role for communication of epithelial damage to the adaptive immune system and activation of airway inflammation. Variants at the ORMDL3/GSDMB locus are associated only with childhood-onset disease. Elevation of total serum IgE levels has a minor role in the development of asthma. (Funded by the European Commission and others.)
The gene encoding apolipoprotein E (APOE) on chromosome 19 is the only confirmed susceptibility locus for late-onset Alzheimer's disease. To identify other risk loci, we conducted a large genome-wide association study of 2,032 individuals from France with Alzheimer's disease (cases) and 5,328 controls. Markers outside APOE with suggestive evidence of association (P < 10(-5)) were examined in collections from Belgium, Finland, Italy and Spain totaling 3,978 Alzheimer's disease cases and 3,297 controls. Two loci gave replicated evidence of association: one within CLU (also called APOJ), encoding clusterin or apolipoprotein J, on chromosome 8 (rs11136000, OR = 0.86, 95% CI 0.81-0.90, P = 7.5 x 10(-9) for combined data) and the other within CR1, encoding the complement component (3b/4b) receptor 1, on chromosome 1 (rs6656401, OR = 1.21, 95% CI 1.14-1.29, P = 3.7 x 10(-9) for combined data). Previous biological studies support roles of CLU and CR1 in the clearance of beta amyloid (Abeta) peptide, the principal constituent of amyloid plaques, which are one of the major brain lesions of individuals with Alzheimer's disease.
Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.