In geotechnical field investigations, cone penetration tests (CPT) are increasingly used for ground characterization of fine‐grained soils. Test results are different parameters that are typically visualized in CPT based data interpretation charts. In this paper we propose a novel methodology which is based on supervised machine learning that permits a redefinition of the boundaries within these charts to account for unique soil conditions. We train ensembles of randomly generated artificial neural networks to classify six soil types based on a database of hundreds of CPT tests from Austria and Norway. After training we combine the multiple unique solutions for this classification problem and visualize the new decision boundaries in between the soil types. The generated boundaries between soil types are comprehensible and are a step towards automatically adjusted CPT interpretation charts for specific local conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.