Protein Nα-terminal acetylation represents one of the most abundant protein modifications of higher eukaryotes. In humans, six Nα-acetyltransferases (Nats) are responsible for the acetylation of approximately 80% of the cytosolic proteins. N-terminal protein acetylation has not been evidenced in organelles of metazoans, but in higher plants is a widespread modification not only in the cytosol but also in the chloroplast. In this study, we identify and characterize the first organellar-localized Nat in eukaryotes. A primary sequence-based search in Arabidopsis thaliana revealed seven putatively plastid-localized Nats of which AT2G39000 (AtNAA70) showed the highest conservation of the acetyl-CoA binding pocket. The chloroplastic localization of AtNAA70 was demonstrated by transient expression of AtNAA70:YFP in Arabidopsis mesophyll protoplasts. Homology modeling uncovered a significant conservation of tertiary structural elements between human HsNAA50 and AtNAA70. The in vivo acetylation activity of AtNAA70 was demonstrated on a number of distinct protein Nα-termini with a newly established global acetylome profiling test after expression of AtNAA70 in E. coli. AtNAA70 predominately acetylated proteins starting with M, A, S and T, providing an explanation for most protein N-termini acetylation events found in chloroplasts. Like HsNAA50, AtNAA70 displays Nε-acetyltransferase activity on three internal lysine residues. All MS data have been deposited in the ProteomeXchange with identifier PXD001947 (http://proteomecentral.proteomexchange.org/dataset/PXD001947).
Cysteine synthesis in bacteria and plants is catalyzed by serine acetyltransferase (SAT) and O-acetylserine (thiol)-lyase (OAS-TL), which form the hetero-oligomeric cysteine synthase complex (CSC). In plants, but not in bacteria, the CSC is assumed to control cellular sulfur homeostasis by reversible association of the subunits. Application of size exclusion chromatography, analytical ultracentrifugation, and isothermal titration calorimetry revealed a hexameric structure of mitochondrial SAT from Arabidopsis thaliana (AtSATm) and a 2:1 ratio of the OAS-TL dimer to the SAT hexamer in the CSC. Comparable results were obtained for the composition of the cytosolic SAT from A. thaliana (AtSATc) and the cytosolic SAT from Glycine max (Glyma16g03080, GmSATc) and their corresponding CSCs. The hexameric SAT structure is also supported by the calculated binding energies between SAT trimers. The interaction sites of dimers of AtSATm trimers are identified using peptide arrays. A negative Gibbs free energy (⌬G ؍ ؊33 kcal mol ؊1 ) explains the spontaneous formation of the AtCSCs, whereas the measured SAT:OAS-TL affinity (K D ؍ 30 nM) is 10 times weaker than that of bacterial CSCs. Free SAT from bacteria is >100-fold more sensitive to feedback inhibition by cysteine than AtSATm/c. The sensitivity of plant SATs to cysteine is further decreased by CSC formation, whereas the feedback inhibition of bacterial SAT by cysteine is not affected by CSC formation. The data demonstrate highly similar quaternary structures of the CSCs from bacteria and plants but emphasize differences with respect to the affinity of CSC formation (K D ) and the regulation of cysteine sensitivity of SAT within the CSC.Cysteine biosynthesis in plants and bacteria is catalyzed by a two-step process. Serine acetyltransferase (SAT 2 ; EC 2.3.1.30) activates serine by transfer of the acetyl moiety from acetyl coenzyme A to form O-acetylserine (OAS). Then OAS accepts sulfide by catalysis of OAS (thiol)-lyase (OAS-TL; EC 2.5.1.47). This fixation of free sulfide from assimilatory sulfate reduction or external sulfide sources is the exclusive entry of reduced sulfur into cellular metabolism. SAT and OAS-TL form the hetero-oligomeric cysteine synthase complex (CSC). In enterobacteria and plants, the interaction of SAT and OAS-TL is stabilized by the presence of sulfide, although the addition of OAS dissociates the two enzymes (1, 2). Plant and bacterial OAS-TLs are dimers that are catalytically inactive in the CSC but become fully active upon dissociation of the complex by OAS (1, 3). However, these properties do not seem to relate to metabolic regulation of cysteine synthesis in enterobacteria. In Escherichia coli, regulation of cysteine synthesis is mainly achieved by control of the cysteine regulon that includes OAS-TL and the genes encoding for proteins catalyzing sulfate uptake and reduction but not bacterial SAT. Bacterial SAT is constitutively expressed but strongly inhibited by cysteine (K I ϭ 1.1 M cysteine). In the presence of cysteine, SAT of E. coli...
Background: Lactate dehydrogenases (LDHs) are key metabolic enzymes in lactic acid bacteria (LAB). Results: The effects of fructose 1,6-bisphosphate, phosphate, pH, and ionic strength on enzyme activity differ for six LDHs from four LAB. Conclusion:The regulation of LDH activity differs among LAB. Significance: These results have implications for understanding enzyme evolutionary adaptation, for quantitative comparative modeling, and for biotechnological application of LAB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.