Perceptual learning is considered a manifestation of neural plasticity in the human brain. We investigated brain plasticity mechanisms in a learning task using noninvasive transcranial electrical stimulation (tES). We hypothesized that different types of tES would have varying actions on the nervous system, which would result in different efficacies of neural plasticity modulation. Thus, the principal goal of the present study was to verify the possibility of inducing differential plasticity effects using two tES approaches [i.e., direct current stimulation (tDCS) and random noise stimulation (tRNS)] during the execution of a visual perceptual learning task.One hundred seven healthy volunteers participated in the experiment. High-frequency tRNS (hf-tRNS, 100 -640 Hz), low-frequency tRNS (lf-tRNS, 0.1-100 Hz), anodal-tDCS (a-tDCS), cathodal-tDCS (c-tDCS), and sham stimulation were applied to the visual areas of the brain in a group of volunteers while they performed an orientation discrimination task. Furthermore, a control group was stimulated on the vertex (Cz). The analysis showed a learning effect during task execution that was differentially modulated according to the stimulation conditions. Post hoc comparisons revealed that hf-tRNS significantly improved performance accuracy compared with a-tDCS, c-tDCS, sham, and Cz stimulations.Our results confirmed the efficacy of hf-tRNS over the visual cortex in improving behavioral performance and showed its superiority in comparison to others tES. We concluded that the mechanism of action of tRNS was based on repeated subthreshold stimulations, which may prevent homeostasis of the system and potentiate task-related neural activity. This result highlights the potential of tRNS and advances our knowledge on neuroplasticity induction approaches.
Transcranial direct current stimulation (tDCS) is able to generate a long-term increase or decrease in the neuronal excitability that can modulate cognitive tasks, similar to repetitive transcranial magnetic stimulation. The aim of this study was to explore the effects of tDCS on a language task in young healthy subjects. Anodal, cathodal and sham tDCS were applied to the left dorsolateral prefrontal cortex (DLPFC) before two picture naming experiments, a preliminary study (i.e., experiment 1) and a main study (i.e., experiment 2). The results show that anodal tDCS of the left DLPFC improves naming performance, speeding up verbal reaction times after the end of the stimulation, whereas cathodal stimulation had no effect. We hypothesize that the cerebral network dedicated to lexical retrieval processing is facilitated by anodal tDCS to the left DLPFC. Although the mechanisms responsible for facilitation are not yet clear, the results presented herein implicate a facilitation lasting beyond the end of the stimulation that imply cortical plasticity mechanisms. The opportunity to non-invasively interact with the functioning of these plasticity mechanisms will surely open new and promising scenarios in language studies in basic and clinical neuroscience fields.
In recent years, there has been remarkable progress in the understanding and practical use of transcranial electrical stimulation (tES) techniques. Nevertheless, to date, this experimental effort has not been accompanied by substantial reflections on the models and mechanisms that could explain the stimulation effects. Given these premises, the aim of this article is to provide an updated picture of what we know about the theoretical models of tES that have been proposed to date, contextualized in a more specific and unitary framework. We demonstrate that these models can explain the tES behavioral effects as distributed along a continuum from stimulation dependent to network activity dependent. In this framework, we also propose that stochastic resonance is a useful mechanism to explain the general online neuromodulation effects of tES. Moreover, we highlight the aspects that should be considered in future research. We emphasize that tES is not an “easy-to-use” technique; however, it may represent a very fruitful approach if applied within rigorous protocols, with deep knowledge of both the behavioral and cognitive aspects and the more recent advances in the application of stimulation.
a b s t r a c tBackground: Transcranial electric stimulation (tES) protocols are able to induce neuromodulation, offering important insights to focus and constrain theories of the relationship between brain and behavior. Previous studies have shown that different types of tES (i.e., direct current stimulation e tDCS, and random noise stimulation e tRNS) induce different facilitatory behavioral effects. However to date is not clear which is the optimal timing to apply tES in relation to the induction of robust facilitatory effects. Objective/hypothesis: The goal of this work was to investigate how different types of tES (tDCS and tRNS) can modulate behavioral performance in the healthy adult brain in relation to their timing of application. We applied tES protocols before (offline) or during (online) the execution of a visual perceptual learning (PL) task. PL is a form of implicit memory that is characterized by an improvement in sensory discrimination after repeated exposure to a particular type of stimulus and is considered a manifestation of neural plasticity. Our aim was to understand if the timing of tES is critical for the induction of differential neuromodulatory effects in the primary visual cortex (V1). Methods: We applied high-frequency tRNS, anodal tDCS and sham tDCS on V1 before or during the execution of an orientation discrimination task. The experimental design was between subjects and performance was measured in terms of d' values. Results: The ideal timing of application varied depending on the stimulation type. tRNS facilitated task performance only when it was applied during task execution, whereas anodal tDCS induced a larger facilitation if it was applied before task execution. Conclusion: The main result of this study is the finding that the timing of identical tES protocols yields opposite effects on performance. These results provide important guidelines for designing neuromodulation induction protocols and highlight the different optimal timing of the two excitatory techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.