Andersen syndrome (AS) is a rare, inherited disorder characterized by periodic paralysis, long QT (LQT) with ventricular arrhythmias, and skeletal developmental abnormalities. We recently established that AS is caused by mutations in KCNJ2, which encodes the inward rectifier K+ channel Kir2.1. In this report, we characterized the functional consequences of three novel and seven previously described KCNJ2 mutations using a two-microelectrode voltage-clamp technique and correlated the findings with the clinical phenotype. All mutations resulted in loss of function and dominant-negative suppression of Kir2.1 channel function. In mutation carriers, the frequency of periodic paralysis was 64% and dysmorphic features 78%. LQT was the primary cardiac manifestation, present in 71% of KCNJ2 mutation carriers, with ventricular arrhythmias present in 64%. While arrhythmias were common, none of our subjects suffered sudden cardiac death. To gain insight into the mechanism of arrhythmia susceptibility, we simulated the effect of reduced Kir2.1 using a ventricular myocyte model. A reduction in Kir2.1 prolonged the terminal phase of the cardiac action potential, and in the setting of reduced extracellular K+, induced Na+/Ca2+ exchanger–dependent delayed afterdepolarizations and spontaneous arrhythmias. These findings suggest that the substrate for arrhythmia susceptibility in AS is distinct from the other forms of inherited LQT syndrome
Defects in the genes coding for the sarcoglycan proteins are limited to patients with Duchenne-like and limb-girdle muscular dystrophy with normal dystrophin and occur in 11 percent of such patients.
Major nuclear envelope abnormalities, such as disruption and/or presence of intranuclear organelles, have rarely been described in cardiomyocytes from dilated cardiomyopathy (DCM) patients. In this study, we screened a series of 25 unrelated DCM patient samples for (a) cardiomyocyte nuclear abnormalities and (b) mutations in LMNA and TMPO as they are two DCM-causing genes that encode proteins involved in maintaining nuclear envelope architecture. Among the 25 heart samples investigated, we identified major cardiomyocyte nuclear abnormalities in 8 patients. Direct sequencing allowed the detection of three heterozygous LMNA mutations (p.D192G, p.Q353K and p.R541S) in three patients. By multiplex ligation-dependant probe amplification (MLPA)/quantitative real-time PCR, we found a heterozygous deletion encompassing exons 3-12 of the LMNA gene in one patient. Immunostaining demonstrated that this deletion led to a decrease in lamin A/C expression in cardiomyocytes from this patient. This LMNA deletion as well as the p.D192G mutation was found in patients displaying major cardiomyocyte nuclear envelope abnormalities, while the p.Q353K and p.R541S mutations were found in patients without specific nuclear envelope abnormalities. None of the DCM patients included in the study carried a mutation in the TMPO gene. Taken together, we found no evidence of a genotype-phenotype relationship between the onset and the severity of DCM, the presence of nuclear abnormalities and the presence or absence of LMNA mutations. We demonstrated that a large deletion in LMNA associated with reduced levels of the protein in the nuclear envelope suggesting a haploinsufficiency mechanism can lead to cardiomyocyte nuclear envelope disruption and thus underlie the pathogenesis of DCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.