Arbuscular mycorrhizal fungi can strongly influence the metabolism of their host plant, but their effect on plant defense mechanisms has not yet been thoroughly investigated. We studied how the principal direct defenses (iridoid glycosides) and indirect defenses (volatile organic compounds) of Plantago lanceolata L. are affected by insect herbivory and mechanical wounding. Volatile compounds were collected and quantified from mycorrhizal and non-mycorrhizal P. lanceolata plants that underwent three different treatments: 1) insect herbivory, 2) mechanical wounding, or 3) no damage. The iridoids aucubin and catalpol were extracted and quantified from the same plants. Emission of terpenoid volatiles was significantly higher after insect herbivory than after the other treatments. However, herbivore-damaged mycorrhizal plants emitted lower amounts of sesquiterpenes, but not monoterpenes, than herbivore-damaged non-mycorrhizal plants. In contrast, mycorrhizal infection increased the emission of the green leaf volatile (Z)-3-hexenyl acetate in untreated control plants, making it comparable to emission from mechanically wounded or herbivore-damaged plants whether or not they had mycorrhizal associates. Neither mycorrhization nor treatment had any influence on the levels of iridoid glycosides. Thus, mycorrhizal infection did not have any effect on the levels of direct defense compounds measured in P. lanceolata. However, the large decline in herbivoreinduced sesquiterpene emission may have important implications for the indirect defense potential of this species.
Plant volatile compounds induced by herbivore attack have been demonstrated to provide a signal to herbivore enemies such as parasitic wasps that use these volatiles to locate their hosts. However, in addition to herbivore-induced volatiles, plants often release volatiles constitutively. We assessed the interaction between herbivore-induced and constitutively released volatiles of maize in the attraction of the wasp Cotesia marginiventris that parasitizes herbivorous lepidopteran larvae feeding on maize. Experiments were carried out with olfactometers in which the sources of volatiles were transgenic Arabidopsis thaliana plants overexpressing maize sesquiterpene synthases that produce blends of herbivore-induced or constitutive compounds. We found that the constitutive volatiles of maize terpene synthase 8 (TPS8) were attractive to C. marginiventris, just like the herbivore-induced volatiles of TPS10 studied earlier. A mixture of both the TPS8 and TPS10 volatile blends, however, was more effective in parasitoid attraction, indicating that constitutively released sesquiterpenes enhance the attraction of those induced by herbivores. While C. marginiventris did not distinguish among the volatiles of TPS8, TPS10, nor those of another maize sesquiterpene synthase (TPS5), when these blends were combined, their attractiveness to the wasp appeared to increase with the complexity of the blend.
Tuber magnatum Pico is an ectomycorrhizal fungus whose mycorrhizas can be barely distinguished morphologically from those of other related white truffles. Here we describe the use of specific primers based on the T. magnatum ITS sequence for screening mycorrhizas from a large number of growth chambers, greenhouse and nursery samples taken in a long-term survey. This molecular identification technique enabled a new morphological characterization to be set up for T. magnatum mycorrhizas.
Genetic variability and population structure of Cercospora beticola, the causal agent of Cercospora leaf spot in sugarbeet, from four sugarbeet-growing regions of Greece were investigated using growth rate, pathogenicity, and mini-and microsatellite DNA fingerprinting. Mycelial growth and pathogenicity were very diverse within and between groups, and no correlation was found between these features and the geographic origin of the isolates. High diversity was found by micro-and minisatellite fingerprinting, with an average gene diversity of 0.21, and no significant differences among populations. Among the 46 isolates, 45 different genotypes were identified, showing a high degree of genotype diversity. Analysis of the genetic profiles provided no evidence for regional patterns of variation (ΦF ST =0.01, P = 0.261) and the analysis of molecular variation (AMOVA) revealed that genetic variability was due mainly to variations within (99%) rather than between (1%) populations. Such a low level of genetic differentiation is reflected by a migration rate value Nm of 4.7. The high migration rate cannot be referred to splash dispersed conidia. To justify the absence of a regional structure in these C. beticola populations, we must suppose the existence of a long-distance means of dispersal, such as seed transmission and/or man mediated transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.