Reduction of water availability imposes the agronomic issues of increasing the storage capacity of the soil and improving the use of rainwater or irrigation water. A field experiment in 2021 was conducted in a 5-year-old peach orchard in a Mediterranean environment to study the effect of mixed composed amendments (ACM), applied in different amounts, on the dynamics of soil water status. Water balance was monitored during the peach vegetative reproductive cycle on a daily scale. Three treatments of mixed composed amendments (ACM) were compared: A0, control; A1, with amendment (10 t ha−1); and A2, with half dose of amendment (5 t ha−1). On a seasonal scale, soil water content increased by 27% and 33% in A1 and A2 compared to A0, while relative extractable water varied between 0.41 (A0) and 0.65 (A1 and A2). Both soil water balance indicators show that storage capacity increases with the addition of amendment. Improved soil storage capacity was associated with higher values of stem water potential (throughout the growing season) and stomatal conductance (at the end of the season). Shoot and fruit growth observations were consistent with soil water content dynamics.
The measurement of transpiration at the field level is a challenging topic in crop water use research, particularly for orchards. The super high density olive orchard system is in great expansion all over the world, so these investigations are necessary to assess the trees water use under different irrigation techniques. Here, transpiration at plant and stand scales was measured using the sap flow thermal dissipation method, in an olive orchard (cv. “Arbosana”) subjected to full and regulated deficit irrigation (RDI) with a withholding irrigation period under Mediterranean climate (southern Italy). The measurement method was used after specific calibration and correction for wound effect, azimuthal and gradient errors. Water use efficiency (WUE) and water productivity (WP) were determined over three complete growth seasons (2019–2022). The seasons were submitted to highly contrasted weathers. Measurements of stem water potential and stomatal conductance showed that the RDI trees were under mild-moderate water stress only during the withholding irrigation period. Results showed that seasonal Tr was not significantly different in the two treatments in all seasons (249 and 267 kgm− 2, 249 and 262 kgm− 2, 231 and 202 kgm-2 for FI and RDI in the three seasons, respectively) and that WUE was greater in RDI treatment without any impact on yield. The main conclusion is that, when the available water in the soil is limited, olive trees decrease transpiration under any atmospheric conditions, but when the water in the soil is amply available, drought conditions lead to a decrease in tree transpiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.