Experiments are reported to reconstruct the taphonomic pathways of fish toward fossilisation. Acrylic glass autoclaves were designed that allow experiments to be carried out at elevated pressure up to 11 bar, corresponding to water depths of 110 m. Parameters controlled or monitored during decay reactions are pressure, salinity, proton activities (pH), electrochemical potentials (Eh), and bacterial populations. The most effective environmental parameters to delay or prevent putrefaction before a fish carcass is embedded in sediment are (1) a hydrostatic pressure in the water column high enough that a fish carcass may sink to the bottom sediment, (2) hypersaline conditions well above seawater salinity, and (3) a high pH to suppress the reproduction rate of bacteria. Anoxia, commonly assumed to be the key parameter for excellent preservation, is important in keeping the bottom sediment clear of scavengers but it does not seem to slow down or prevent putrefaction. We apply our results to the world-famous Konservat-Lagerstätten Eichstätt-Solnhofen, Green River, and Messel where fish are prominent fossils, and reconstruct from the sedimentary records the environmental conditions that may have promoted preservation. For Eichstätt-Solnhofen an essential factor may have been hypersaline conditions. Waters of the Green River lakes were at times highly alkaline and hypersaline because the lake stratigraphy includes horizons rich in sodium carbonate and halite. In the Messel lake sediments some fossiliferous horizons are rich in FeCO 3 siderite, a mineral indicating highly reduced conditions and a high pH. Since the advent of experimental methods in paeontological research, our understanding of taphonomic and fossilisation reactions has much improved. Today we realise how easily and rapidly organic tissue may be transformed into inorganic materials 1-6. Consensus is emerging that fossilisation reactions can take place within time frames accessible with laboratory experiments 7. The near-perfect articulation of the Pycnodontid in Fig. 1 suggests that the decision for or against preservation must have been made early, shortly after the fish died. Under ambient marine conditions-oxygenated water, normal marine salinity, and near-neutral pH-a fish so delicate would have been disarticulated or consumed by scavengers within hours to days. But what are the environmental factors most effective in retarding or preventing organic decay? If we identify those variables experimentally, we may hold the key to understanding the genesis of Konservat-Lagerstätten within which fish are prominent fossils. We report novel decay experiments with fish to understand early taphonomic pathways toward fossilisation. Parameters investigated experimentally are elevated hydrostatic pressure, elevated salinity, the role of proton (pH) and electron activity (Eh), bacterial activity, and time. We apply our results to three prominent Konservat-Lagerstätten where fossil fish are prominent species-Eichstätt-Solnhofen, Green River, and Messel. Previous taphon...
Bones are one of the most common vertebrate fossil remains and are widely used as proxy archives in palaeontology and archaeology. Previous histological analyses have shown that bone microarchitecture is mostly well-preserved in fossil remains, but partially or even entirely lost in most archaeological specimens. As a consequence, processes occurring during early diagenesis are pivotal for the preservation of bones and a better understanding of these processes would be required to assess the significance of information stored in fossilized bones. Although much of the changes occur at the nanometer scale, determining the resistance of bone microarchitecture to diagenetic alteration on a microscopic scale constitutes a prerequisite for more detailed studies. Here, results from the first comparative in vitro taphonomy study of cortical bone simulating conditions potentially encountered in early diagenetic settings are presented. In order to accelerate anticipated early diagenetic changes and to facilitate their study in a practical framework, cortical bone samples were exposed to aqueous solutions with temperature, time, and composition of the experimental solutions as controlled parameters. Before and after the experiments, all samples were characterized quantitatively using micro-computed tomography to document structural changes. The results show that the overall change in cortical porosity predominantly occurred in canals with diameters ≤9 µm (∆Ct.Po = ±30%). Furthermore, the data also show that the solution composition had a stronger impact on changes observed than either temperature or time. It was also found that samples from the two experimental series with a freshwater-like solution composition showed a characteristic reaction rim. However, it remains unclear at present if the observed changes have an impact on reactions occurring at the nanometer scale. Nonetheless, the results clearly demonstrate that on a micrometer scale down to 3 μm, bone microarchitecture is largely resistant to aqueous alteration, even under very different physicochemical conditions. In addition, the data illustrate the complexity of the interaction of different diagenetic factors. The results presented here provide a solid framework for future investigations on reaction and transport mechanisms occurring during the early diagenesis of fossil bones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.