OBJECTIVEExcess accumulation of advanced glycation end products (AGEs) contributes to aging and chronic diseases. We aimed to obtain evidence that exposure to AGEs plays a role in the development of type 1 diabetes (T1D).RESEARCH DESIGN AND METHODSThe effect of AGEs was examined on insulin secretion by MIN6N8 cells and mouse islets and in vivo in three separate rodent models: AGE-injected or high AGE–fed Sprague-Dawley rats and nonobese diabetic (NODLt) mice. Rodents were also treated with the AGE-lowering agent alagebrium.RESULTSβ-Cells exposed to AGEs displayed acute glucose-stimulated insulin secretory defects, mitochondrial abnormalities including excess superoxide generation, a decline in ATP content, loss of MnSOD activity, reduced calcium flux, and increased glucose uptake, all of which were improved with alagebrium treatment or with MnSOD adenoviral overexpression. Isolated mouse islets exposed to AGEs had decreased glucose-stimulated insulin secretion, increased mitochondrial superoxide production, and depletion of ATP content, which were improved with alagebrium or with MnTBAP, an SOD mimetic. In rats, transient or chronic exposure to AGEs caused progressive insulin secretory defects, superoxide generation, and β-cell death, ameliorated with alagebrium. NODLt mice had increased circulating AGEs in association with an increase in islet mitochondrial superoxide generation, which was prevented by alagebrium, which also reduced the incidence of autoimmune diabetes. Finally, at-risk children who progressed to T1D had higher AGE concentrations than matched nonprogressors.CONCLUSIONSThese findings demonstrate that AGEs directly cause insulin secretory defects, most likely by impairing mitochondrial function, which may contribute to the development of T1D.
Blockade of advanced glycation end product (AGE) accumulation with alagebrium with concomitant angiotensin converting enzyme inhibition was tested for effects on renal function and on other postulated mediators of diabetic renal disease including the renin-angiotensin system, AGEs, mitochondrial and cytosolic oxidative stress, and intracellular signaling molecules. Sprague Dawley rats were rendered diabetic with streptozocin and followed consecutively for 32 wk with nondiabetic controls. Groups were treated with ramipril (1 mg/kg⅐d; wk 0 -32); alagebrium (10 mg/kg⅐d; wk 16 -32); or a combination of both. Although individual treatments had significant effects on albuminuria, no further improvements were seen with combination therapy. Changes in urinary vascular endothelial growth factor excretion mirrored those seen in albuminuria. Diabetes was associated with suppression of circulating angiotensin II in the context of increased circulating and renal levels of the AGE, carboxymethyllysine. All treatments attenuated circulating but not renal carboxymethyllysine levels. The renal gene expression of AGE receptor 1 and soluble receptor for advanced glycation end products were markedly reduced by diabetes and normalized with alagebrium. Diabetes induced renal mitochondrial oxidative stress, which was reduced with alagebrium. In the cytosol, both therapies were equally effective in reducing reactive oxygen species production. Increases in membranous protein kinase C activity in diabetes were attenuated by all treatments, whereas diabetes-associated increases in nuclear factor-B p65 translocation remained unaltered by any therapy. It is evident that renin-angiotensin system blockade and AGE inhibition have specific effects. However, many of their downstream effects appear to be similar, suggesting that their renoprotective benefits may ultimately involve common pathways and key points of convergence, which could be important targets for new therapies in diabetic nephropathy. (Endocrinology 148: 886 -895, 2007)
Aim/hypothesis Low-grade inflammation may contribute to obesity-related insulin resistance and has been associated with increased risk of type 2 diabetes mellitus. The present study evaluated whether treatment with salsalate, a traditional anti-inflammatory medication, would improve insulin action in obese non-diabetic individuals. Methods The study was a randomised, double-blind, placebocontrolled, parallel trial conducted at the inpatient clinical research unit of the NIDKK (Phoenix, AZ, USA). Participants were 54 adults (18 to 45 years of age) with BMI≥30 kg/m 2 . The intervention was salsalate (3 g/day, n=28) or identical placebo (n=26) for 7 days. The allocation was kept concealed by giving the investigator only a number corresponding to a vial of placebo or salsalate sequentially randomised in blocks by sex. Main outcomes were changes in insulin action assessed as rate of glucose disposal (R d ) by euglycaemic-hyperinsulinaemic clamp (insulin infusion rate 40 mU m −2 min −1) and glucose tolerance by 75 g OGTT. ResultsThe study was completed by 47 participants, of which 40 were analysed (salsalate n=22, placebo n=18
Tubulointerstitial fibrosis is largely mediated by (myo)fibroblasts present in the interstitium. In this study, we investigated the role of mTOR and phosphatidylinositol 3-kinase in the regulation of fibroblast kinetics, fibroblast differentiation, and collagen synthesis. Rat renal fibroblasts were propagated from kidneys 3 days post-ureteric obstruction and specific inhibitors of mTOR (RAD) and phosphatidylinositol 3-kinase (LY294002) were used to examine the regulation of fibrogenesis. LY294002 but not RAD completely inhibited phosphorylation of Akt, while both inhibitors decreased phosphorylation of the S6 ribosomal protein. RAD and LY decreased foetal calf serum stimulated proliferation and DNA synthesis. In addition to their individual effects, treatment with both RAD and LY294002 decreased serum-induced fibroblast proliferation and DNA synthesis significantly more than either drug alone. TUNEL positive cells (apoptosis) in RAD and LY294002 treated groups were not different from control groups. In addition to their effect on proliferation, both inhibitors also reduced total collagen synthesis. Differentiation studies indicated an increase in alpha-smooth muscle actin expression relative to beta-actin (western blotting), with cytochemistry confirming that all doses of RAD and LY294002 increased the proportion of alpha-smooth muscle actin positive cells, and hence myofibroblasts. Effects were independent of cell toxicity. These results highlight the potential significance of PI3K and mTOR, in the regulation of renal (myo)fibroblast activity. The synergistic effects of LY and RAD on proliferation suggest that mTOR signalling involves pathways other than phosphatidylinositol 3-kinase. These results provide a novel insight into the mechanisms of fibroblast regulation during fibrogenesis.
Advanced glycation end products (AGEs) are formed from the non-enzymatic reaction between reducing sugars and amine residues on proteins, lipoproteins or nucleic acids. AGEs are found on long-lived proteins and their tissue accumulation is associated with normal ageing. The formation of AGEs can be accelerated in certain pathological conditions such as diabetes where hyperglycaemia is present. AGE modification of proteins can lead to alterations of normal function by binding to intracellular or extracellular cell components, or through receptor binding. This consequently can initiate a cascade of events, which includes the activation of signal transduction pathways, which activate inflammatory responses causing tissue damage. Such tissue injury contributes to the development of microvascular complications and is of particular relevance in diabetes where interventions to reduce the accumulation of AGEs is desirable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.