In this paper, we present Skills2Graph, a tool that, starting from a set of users’ professional skills, identifies the most suitable jobs as they emerge from a large corpus of 2.5M+ Online Job Vacancies (OJVs) posted in three different countries (the United Kingdom, France, and Germany). To this aim, we rely both on co-occurrence statistics - computing a count-based measure of skill-relevance named Revealed Comparative Advantage (rca) - and distributional semantics - generating several embeddings on the OJVs corpus and performing an intrinsic evaluation of their quality. Results, evaluated through a user study of 10 labor market experts, show a high P@3 for the recommendations provided by Skills2Graph, and a high nDCG (0.985 and 0.984 in a [0,1] range), that indicates a strong correlation between the experts’ scores and the rankings generated by Skills2Graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.