A fast FBG sensor interrogator on chip based on SOI ring resonator (RR) filters is presented. The measurement of the Bragg wavelength shift is based on the detection of multiple signals at the output ports of the RR filter, providing fast dynamic strain measurement capabilities, fundamentally limited by the photodetector bandwidth and signal processing. The ring resonator resonance wavelength is tuned and fixed by an integrated heater and the ring acts as a passband filter for the reflected FBG spectrum. After a theoretical analysis of the interrogation method, which allows the optimization of the RR characteristics depending on the specific application and requirements, we present experimental results on a single RR based interrogation scheme applying high frequency dynamic strain up to 40 kHz. We also theoretically evaluate the performance of multi-ring resonators. The proposed scheme provides low cost, high scalability to mass-volume market applications as well as an extremely fast interrogation method.
A fast FBG sensor interrogator based on a SOI ring resonator (RR) filter is presented. The measurement of the Bragg wavelength shift is based on the detection of the signals at the output ports of the RR. Ring resonance wavelength is tuned and fixed by an integrated heater and the ring acts as a passband filter for the reflected FBG spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.