The ozonization mechanism for polycyclic aromatic hydrocarbons (PAHs) and soot is investigated by quantum mechanical calculations carried out on molecular and periodic systems. PAHs, interesting per se, serve also to model the local features of the graphenic soot platelets, for which another model is provided by a periodic representation of one graphenic layer. A concerted addition leads to a primary ozonide, while a nonconcerted attack produces a trioxyl diradical (in which one of the two unpaired electrons is pi-delocalized). Easy loss of (i) (1)O(2) or (ii) (3)O(2) from either intermediate, with spin conservation, would yield stable (i) singlet or (ii) triplet pi-delocalized species which carry an epoxide group. The trioxyl diradical pathway is estimated to be preferred, in these systems. An intersystem crossing, taking place in the trioxyl diradicals, can be invoked to allow the even easier loss of a ground-state oxygen molecule with the formation of a ground-state epoxide in a more exoergic and less demanding step. We propose that soot ozonization can take place by such a process, with ultimate functionalization of the graphenic platelets by epoxide groups.
The synthesis of polycyclic aromatic hydrocarbons (PAHs) and the formation of soot platelets occur both during combustion at relatively low [O(2)], or under pyrolysis conditions. When the PAH size grows beyond the number of three-four condensed cycles, the partitioning of PAHs between the gas and particle phases favours the latter (i.e. adsorption). This study aims to assess which role the soot particle plays during PAH synthesis, in particular if catalytic or template effects of some sort can be exerted by the soot platelet on the adsorbed growing PAH-like radical. Our theoretical calculations indicate that chain elongation by ethyne addition cannot compete with cyclization when both can take place in the growing PAH-like radical, already in the gas phase. When it is adsorbed, cyclization is found to become easier than in the gas phase (more so, in terms of Gibbs free energy barriers, at higher temperatures), hinting at some sort of template effect, while chain elongation by ethyne addition becomes somewhat more difficult. The underlying soot platelet can assist (at lower temperatures) the formation of a larger aromatic hydrocarbon, by a final hydrogen abstraction from that endocyclic saturated carbon the newly formed cycle still bears. As an alternative (at higher temperature), a spontaneous hydrogen atom loss can take place. Finally, at rather low temperatures, the addition of the growing radical to the underlying soot platelet might occur and cause some reticulation, form more disordered structures, i.e. soot precursors instead of PAHs.
PAHs made from an odd number of unsaturated carbon atoms and pi electrons (odd PAHs) have been detected in flames and flank the more familiar even PAHs, having approximately the same quantitative importance, particularly for PAHs containing more than 25 carbon atoms. Similarly, soot platelets containing an odd number of carbon atoms can be reasonably assumed to form during combustion. PAHs are intended here as small models for the investigation of some of their local features. To this end, quantum mechanical calculations were also carried out on periodic models. The spin density patterns were found to be highly dependent on the PAH size and shape. PAHs and soot, once released in the environment, can undergo several oxidation processes. Ozone is then taken as a probe of the reactivity properties of some internal exposed portions of a platelet. A primary ozonide (PO) corresponds to an energy minimum, but the relevant concerted addition pathway does not exist, because a PO-like saddle point is second-order. The reaction begins with a nonconcerted attack that produces a trioxyl radical (TR). Subsequent O2 loss from the TR leaves either an epoxide with a pi-delocalized electron or a pi-delocalized oxepine, by cleavage of the ring carbon-carbon bond. The initial doublet spin multiplicity thus provides a description of the reaction surface unlike that for the internal reactivity of the closed-shell even systems investigated in a previous work, even though the final functionalization is the same.
Carbon nanoparticles, generated during combustion at relatively low [O 2 ], or under pyrolysis conditions, can be seen both as soot precursors and as primary pollutants in themselves, since they are also directly emitted in the troposphere by vehicles. Soot particle inception (transition of relatively low-mass molecular systems from the gaseous phase to a solid nature) occurs at least in part via polycyclic aromatic hydrocarbon (PAH) coagulation/condensation. Complexes of different PAH systems, bound only by dispersion/multipolar forces, are investigated here by density functional theory, and their structural and energetic features discussed. The energetic features of the complexes allow to define an interplane interaction energy per C atom which compares satisfactorily with published experimental data on graphite exfoliation (i.e., removal of a single layer from the top of its bulk). The temperature dependence of the equilibrium K for these systems is then calculated to estimate the importance of PAH coagulation (condensation) in carbon nanoparticle generation. Energy alone would suggest that the larger interacting systems will be better stabilized by dispersion forces, but the trends in free energies are affected also by the entropy factor. This implies that beyond some temperatures the components of the largest systems will be more prone to fly apart than those of smaller systems, thus limiting the size of crystallites beyond some temperature. On the basis of our computational results, at high temperatures sheer stacking via van der Waals interaction can hardly be a major factor in causing soot nanoparticle inception.
ARTICLEresults obtained with the modest 3-21G(d) basis set can be sufficiently reliable.' ASSOCIATED CONTENT b S Supporting Information. Tables reporting deformation energies, ΔS(T), and ΔH(T) values, the geometries and energetics of all optimized structures, and all vibrational frequencies. This material is available free of charge via the Internet at http:// pubs.acs.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.