The national seismic hazard maps for the conterminous United States have been updated to account for new methods, models, and data that have been obtained since the 2008 maps were released (Petersen and others, 2008). The input models are improved from those implemented in 2008 by using new ground motion models that have incorporated about twice as many earthquake strong ground shaking data and by incorporating many additional scientific studies that indicate broader ranges of earthquake source and ground motion models. These time-independent maps are shown for 2-percent and 10-percent probability of exceedance in 50 years for peak horizontal ground acceleration as well as 5-hertz and 1-hertz spectral accelerations with 5-percent damping on a uniform firm rock site condition (760 meters per second shear wave velocity in the upper 30 m, V S30). In this report, the 2014 updated maps are compared with the 2008 version of the maps and indicate changes of plus or minus 20 percent over wide areas, with larger changes locally, caused by the modifications to the seismic source and ground motion inputs.
New seismic hazard maps have been developed for the conterminous United States using the latest data, models, and methods available for assessing earthquake hazard. The hazard models incorporate new information on earthquake rupture behavior observed in recent earthquakes; fault studies that use both geologic and geodetic strain rate data; earthquake catalogs through 2012 that include new assessments of locations and magnitudes; earthquake adaptive smoothing models that more fully account for the spatial clustering of earthquakes; and 22 ground motion models, some of which consider more than double the shaking data applied previously. Alternative input models account for larger earthquakes, more complicated ruptures, and more varied ground shaking estimates than assumed in earlier models. The ground motions, for levels applied in building codes, differ from the previous version by less than ±10% over 60% of the country, but can differ by ±50% in localized areas. The models are incorporated in insurance rates, risk assessments, and as input into the U.S. building code provisions for earthquake ground shaking.
Demand surge is a process resulting in a higher cost to repair building damage after large disasters than to repair the same damage after a small disaster; this higher cost can be an additional 20% or more. It is of interest to insurers, regulators, property owners, and others. Despite its importance, demand surge has no standard definition or generally accepted predictive theory of its mechanisms and quantitative effects. By studying the circumstances of natural disasters that did and did not cause demand surge, common explanatory themes emerge from these historical events that may describe why and how much losses increase in some disasters. The themes are: total amount of repair work; timing of reconstruction; costs of materials, labor, and equipment; contractor overhead and profit; the general economic situation; insurance claims handling; and decisions of an insurance company. The development of these themes will aid in constructing a mechanistic, empirically supported approach to modeling demand surge.
This study collects recorded ground motions from the near-source region of large earthquakes and considers to what extent this historic record can inform expectations of future ground motions at similar sites. The distribution of observed peak ground acceleration (PGA) is well approximated by the lognormal distribution, and we expect the observed distribution to remain unchanged with the addition of data from future earthquakes. However, the distribution of peak ground displacements (PGD) will likely change after a well-recorded large earthquake. Specifically we expect future observations of PGD greater than those previously recorded. We use seismic scaling relations to motivate the expected distribution of PGD as uniform on the logarithmic scale, or at least fat-tailed. Because PGA does not scale with fault rupture area or slip on the fault, there are no such scaling relations to predict the observed distribution of PGA. The observed records show that there is essentially no correlation between PGD and PGA for near-source ground motions from large events. The large uncertainty in a future value of PGD in the near-source region of a large earthquake exists despite the ability of Earth scientists to accurately model long-period ground motions. In contrast, the relative certainty in a future value of PGA exists despite the inability to model short-period ground motions reliably. The stability of the observed distribution of PGA with respect to new ground-motion records enables us to predict the distribution of future PGA and to calculate the probability of exceeding the largest recorded PGA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.