Oxynitrides are promising materials for visible light-driven water splitting. However, limited information regarding their electron-momentum resolved electronic structure exists. Here, with the advantage of the enhanced probing depth and chemical state specificity of soft-X-ray ARPES, we determine the electronic structure of the photocatalyst oxynitride LaTiO2N and monitor its evolution as a consequence of the oxygen evolution reaction. After the photoelectrochemical reactions, we observe a partial loss of Ti- and La-N 2p states, distortions surrounding the local environment of titanium atoms and, unexpectedly, an indication of an electron accumulation layer at or near the surface, which may be connected with either a large density of metallic surface states or downward band bending. The distortions and defects associated with the titanium 3d states lead to the trapping of electrons and charge recombination, which is a major limitation for the oxynitride LaTiO2N. The presence of an accumulation layer and its evolution suggests complex mechanisms of the photoelectrochemical reaction, especially in cases where co-catalysts or passivation layers are used.
The ferri- and antiferromagnetic structures of a hureaulite-type synthetic compound, Mn2+5(PO4)2(PO3(OH))2(HOH)4, were elucidated by high-resolution neutron powder diffraction in combination with magnetic susceptibility and heat capacity measurements. At 6.17 K, the paramagnetic phase (space group: C2/c) transforms to inherit a ferrimagnetic order (magnetic space group: C2′/c′), followed at 1.86 K by an incommensurately modulated antiferromagnetic order (magnetic superspace group: P21/c.1′(α0γ)00s with the propagation vector k(0.523(2), 0, 0.055(1)). In the ferrimagnetic state, antiferromagnetic interactions are dominant for both intra and inter pentamers of Mn2+(O, HOH)6 octahedra. Differently aligned spin-canting sublattices seen in the ferrimagnetic models at 3.4, 4.5, and 6.1 K explain a weak ferromagnetism in the title compound. The observation of magnetic moments vigorously changing in a small temperature range of 6.1–1.5 K adumbrates a high complexity of interplaying structural and magnetic orders in this manganese phosphatic oxyhydroxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.