A robust procedure for the determination of 16 US EPA PAHs in both aqueous (e.g. wastewaters, industrial discharges, treated effluents) and solid samples (e.g. suspended solids and sludge) from a wastewater treatment plant (WWTP) is presented. Recovery experiments using different percentages of organic modifier, sorbents and eluting solvent mixtures were carried out in Milli-Q water (1000 mL) spiked with a mixture of the PAH analytes (100 ng/L of each analyte). The solid phase extraction (SPE) procedures applied to spiked waste water samples (1000 mL; 100 ng/L spiking level) permitted simultaneous recovery of all the 16PAHs with yields >70% (6-13% RSD). SPE clean up procedures applied to sewage and stabilized sludge extracts, showed percent recoveries in the range 73-92% (7-13% RSD) and 71-89% (7-12% RSD), respectively. The methods were used for the determination of PAHs in aqueous and solid samples from the WWTP of Fusina (Venice, Italy). Mean concentrations, as the sum of the 16PAHs in aqueous and suspended solid samples, were found to be approx. in the 1.12-4.62 microg/L range. Sewage and stabilized sludge samples contained mean PAH concentrations, as sum of 16 compounds, in the concentration range of 1.44-1.26 mg/kg, respectively. Extraction and clean up procedures for sludge samples were validated using EPA certified reference material IRM-104 (CRM No. 912). Instrumental analyses were performed by coupling HPLC with UV-diode array detection (UV-DAD) and fluorescence detection (FLD).
A full-scale (110 ML/d) potable water treatment plant (WTP) based on the MIEX process, an innovative new process based on a strong base anion-exchange resin with magnetic properties, has been operating in Perth Western Australia since 2001. This plant has been configured so that a combined MIEX-coagulation (MIEX-C) process can be operated in parallel with a conventional enhanced coagulation (EC) process, allowing comparison of the performance of the two processes. Here, we report the use of size exclusion chromatography (SEC) to compare the removal of different apparent molecular weight (AMW) fractions of DOC by the two processes. Water was sampled from five key locations within the WTP, and SEC was carried out using three different on-line detector systems, DOC-specific detection, UV absorbance detection at lambda = 254 nm, and fluorescence detection (lambda(ex) = 282 nm; lambda(em) = 353 nm). This approach provided information on the chemical nature of the DOC comprising the various AMW fractions. The study showed that the MIEX-C process outperformed the EC process with greater removal of DOC in each of the eight separate AMW fractions identified. While EC preferentially removed the fractions of highest AMW, and those exhibiting the greatest aromatic (humic) character, MIEX-C removed DOC across all AMW fractions and did not appear to discriminate as strongly on the basis of differences in aromatic character or AMW. The results demonstrate the benefits of combining these complementary treatment processes. The study also demonstrates the utility of SEC coupled with multiple detection systems in determining the characteristics of various AMW components of DOC.
Disinfection of drinking water is the most successful measure to reduce water-borne diseases and protect health. However, disinfection byproducts (DBPs) formed from the reaction of disinfectants such as chlorine and monochloramine with organic matter may cause bladder cancer and other adverse health effects. In this study the formation of DBPs through a full-scale water treatment plant serving a metropolitan area in Australia was assessed using in vitro bioanalytical tools, as well as through quantification of halogen-specific adsorbable organic halogens (AOXs), characterization of organic matter, and analytical quantification of selected regulated and emerging DBPs. The water treatment train consisted of coagulation, sand filtration, chlorination, addition of lime and fluoride, storage, and chloramination. Nonspecific toxicity peaked midway through the treatment train after the chlorination and storage steps. The dissolved organic matter concentration decreased after the coagulation step and then essentially remained constant during the treatment train. Concentrations of AOXs increased upon initial chlorination and continued to increase through the plant, probably due to increased chlorine contact time. Most of the quantified DBPs followed a trend similar to that of AOXs, with maximum concentrations observed in the final treated water after chloramination. The mostly chlorinated and brominated DBPs formed during treatment also caused reactive toxicity to increase after chlorination. Both genotoxicity with and without metabolic activation and the induction of the oxidative stress response pathway showed the same pattern as the nonspecific toxicity, with a maximum activity midway through the treatment train. Although measured effects cannot be directly translated to adverse health outcomes, this study demonstrates the applicability of bioanalytical tools to investigate DBP formation in a drinking water treatment plant, despite bioassays and sample preparation not yet being optimized for volatile DBPs. As such, the bioassays are useful as monitoring tools as they provide sensitive responses even at low DBP levels.
The kinetics of iodate formation is a critical factor in mitigation of the formation of potentially toxic and off flavor causing iodoorganic compounds during chlorination. This study demonstrates that the formation of bromine through the oxidation of bromide by chlorine significantly enhances the oxidation of iodide to iodate in a bromide-catalyzed process. The pH-dependent kinetics revealed species specific rate constants of k(HOBr + IO(-)) = 1.9 × 10(6) M(-1) s(-1), k(BrO(-) + IO(-)) = 1.8 × 10(3) M(-1) s(-1), and k(HOBr + HOI) < 1 M(-1) s(-1). The kinetics and the yield of iodate formation in natural waters depend mainly on the naturally occurring bromide and the type and concentration of dissolved organic matter (DOM). The process of free chlorine exposure followed by ammonia addition revealed that the formation of iodo-trihalomethanes (I-THMs), especially iodoform, was greatly reduced by an increase of free chlorine exposure and an increase of the Br(-)/I(-) ratio. In water from the Great Southern River (with a bromide concentration of 200 μg/L), the relative I-incorporation in I-THMs decreased from 18 to 2% when the free chlorine contact time was increased from 2 to 20 min (chlorine dose of 1 mg Cl(2)/L). This observation is inversely correlated with the conversion of iodide to iodate, which increased from 10 to nearly 90%. Increasing bromide concentration also increased the conversion of iodide to iodate: from 45 to nearly 90% with a bromide concentration of 40 and 200 μg/L, respectively, and a prechlorination time of 20 min, while the I-incorporation in I-THMs decreased from 10 to 2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.