SummaryCell fate acquisition is a fundamental developmental process in all multicellular organisms. Yet, much is unknown regarding how a cell traverses the pathway from stem cell to terminal differentiation. Advances in single cell genomics1 hold promise for unraveling developmental mechanisms2–3 in tissues4, organs5–6, and organisms7–8. However, lineage tracing can be challenging for some tissues9 and integration of high-quality datasets is often necessary to detect rare cell populations and developmental states10,11. Here, we harmonized single cell mRNA sequencing data from over 110,000 cells to construct a comprehensive atlas for a stereotypically developing organ with indeterminate growth, the Arabidopsis root. To test the utility of the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at single cell resolution, shortroot and scarecrow. Although both transcription factors are required for early specification of cell identity12, our results suggest the existence of an alternative pathway acting in mature cells to specify endodermal identity, for which SHORTROOT is required. Uncovering the architecture of this pathway will provide insight into specification and stabilization of the endodermis, a tissue analogous to the mammalian epithelium. Thus, the atlas is a pivotal advance for unraveling the transcriptional programs that specify and maintain cell identity to regulate organ development in space and time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.