SUMMARY Streptococcus pyogenes , also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
SUMMARY Group A streptococci are model extracellular gram-positive pathogens responsible for pharyngitis, impetigo, rheumatic fever, and acute glomerulonephritis. A resurgence of invasive streptococcal diseases and rheumatic fever has appeared in outbreaks over the past 10 years, with a predominant M1 serotype as well as others identified with the outbreaks. emm (M protein) gene sequencing has changed serotyping, and new virulence genes and new virulence regulatory networks have been defined. The emm gene superfamily has expanded to include antiphagocytic molecules and immunoglobulin-binding proteins with common structural features. At least nine superantigens have been characterized, all of which may contribute to toxic streptococcal syndrome. An emerging theme is the dichotomy between skin and throat strains in their epidemiology and genetic makeup. Eleven adhesins have been reported, and surface plasmin-binding proteins have been defined. The strong resistance of the group A streptococcus to phagocytosis is related to factor H and fibrinogen binding by M protein and to disarming complement component C5a by the C5a peptidase. Molecular mimicry appears to play a role in autoimmune mechanisms involved in rheumatic fever, while nephritis strain-associated proteins may lead to immune-mediated acute glomerulonephritis. Vaccine strategies have focused on recombinant M protein and C5a peptidase vaccines, and mucosal vaccine delivery systems are under investigation.
Most invasive bacterial infections are caused by species that more commonly colonize the human host with minimal symptoms. Although phenotypic or genetic correlates underlying a bacterium's shift to enhanced virulence have been studied, the in vivo selection pressure governing such shifts are poorly understood. The globally disseminated M1T1 clone of group A Streptococcus (GAS) is linked with rare but life-threatening syndromes of necrotizing fasciitis and toxic shock syndrome. Mutations in the GAS control of virulence regulatory sensor kinase (covRS) operon are associated with severe invasive disease, abolishing expression of a broad spectrum cysteine protease (SpeB)2,3 and allowing the recruitment and activation of host plasminogen on the bacterial surface. Here we describe how bacteriophage-encoded GAS DNase (Sda1), which facilitates the pathogen's escape from neutrophil extracellular traps (NETs)5,6, serves as a selective force for covRS mutation. The results provide a paradigm whereby natural selection exerted by the innate immune system generate hypervirulent bacterial variants with increased risk of systemic dissemination. Keywords CMMB Disciplines Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences Publication DetailsThis article was originally published as Walker, MJ et al, DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection, Nature Medicine 13, 2007, 981- GAS is estimated to cause ~700 million cases of self-limited throat or skin infection each year worldwide 7 . Invasive GAS disease occurs in approximately 1/1,000 cases, with associated mortality of 25% 7 . Epidemic invasive disease is associated with the emergence of the globally disseminated GAS M1T1 clone 1,8 , which is distinguished from related strains by acquisition of prophages encoding virulence determinants such as superantigen SpeA and DNase Sda1 9,10 . In the M1T1 GAS clone, the transition from local to systemic infection can be linked to mutations in the two-component covRS regulator. The effect of these mutations is a distinct shift in the transcriptional 3 profile of invasive GAS isolates compared to mucosal (throat) isolates 3 . The covRS mutation and changes in gene expression are recapitulated upon subcutaneous challenge of mice and analysis of GAS disseminating to the spleen in comparison with those in the original inocolum 3 . Prominent changes in the transcriptional profile of invasive GAS isolates include a strong up-regulation of the DNase gene sda1, and a marked decrease in expression of the gene encoding the cysteine protease SpeB 3 .Sda1 is a virulence factor that protects GAS against neutrophil killing by degrading the DNA framework of NETs 5,6 . Abolishment of SpeB expression allows accumulation and activation of the broad spectrum host protease plasmin on the GAS bacterial surface 4 . A clinical correlation of GAS invasive disease severity and diminished SpeB expression has been established 2 .To elucidate the selection pressure for the rap...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.