Understanding the ecology of soil rhizosphere is essential to enhancing soil ecosystem and plants productivity. Poor-soil properties can limit rhizosphere microbial composition, interactions and plants productivity. Furthermore, the presence of plant exudates and microbial interation can change the rhizosphere dynamic. In the current study, we used two types of soils, rich nutrient soil represented by potting-soil and poor-soil represented with nutrientdeprived poor-soil. The two types of soil were inoculated with five microbial combinations using plant growth promoting bacteria (PGPB, Pseudomonas fluorescens) and mycorrhiza, and planted with two-day-old sorghum bicolor and Setaria italica (Foxtail millet) seedlings. Soil elements analyses were conducted 60 days after planting. The availability of exchangeable base alkali elements (Ca, Mg, Na) were measured and compared. Na was exclusively affected by PGPB inoculation in both soil types. Ca and Mg increased highest when associated with arbuscular inoculation, exclusively, in comparison to association with PGPB or Ectomycorrhiza in both soil types when planted with sorghum. Whereas, the same elements Ca and Mg, increased highest when associated with arbuscular mycorrhiza inoculation whether combined with PGPB or ectomycorrhiza when in soil planted with Setaria italica. The mycorrhiza increased Ca and Mg availability when combined with PGPB. Naincrease was associated only with PGPB inoculation solely in both soil types. The use of arbuscular mycorrhiza inoculation combined with PGPB is ecofriendly method to enrich rhizosphere in poor-soil and eliminate the need to use any chemical fertilizers.
Poor soil is one of the agricultural world's principal challenges, inciting the use of chemical fertilizer's to improve overall soil quality. However, the use of chemical fertilizer has significant and cascading environmental consequences. Therefore, the use of beneficial microbes' inoculation in treating poor soil is a considerably ecofriendly sustainable solution. In the current study, we supplemented nutrient-deprived soil with plant growth promoting bacteria (PGPB), Pseudomonas fluorescens. The bacterial inoculations of Pseudomonas fluorescens were added to the poor soil following two days post-sowing of Zea mays var. amylacea and Pennisetum americanum p. seedlings. Metabolite analyses were conducted two months after treatment for both shoots and roots using nuclear magnetic resonance method (NMR). The data indicated significant changes in 19 metabolites relative to control in both plants shoot and roots. Among these metabolites, 7 were upregulated in roots of Zea mays var. amylacea, and 9 metabolites were upregulated in roots of Pennisetum americanum p. The PGPB enhanced sugars (fructose, glucose, sucrose) and amino acids (glutamate, alanine and succinate) in roots, while down regulating in shoots of Pennisetum americanum p. The Pseudomonas fluorescens induced, predominantly, Aminoacyl-tRNA related metabolite, and Alanine, aspartate and glutamate metabolite biosynthesis in Zea mays var. amylacea), whereas PGPB induced metabolites in Pennisetum americanum p., dominated by up regulated carbohydrate related (starch and sucrose) metabolites. The difference in some metabolic response between the two plants indicated that PGPB influence has a species-specific manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.