We present a femtosecond UV-mid-IR pump-probe study of the photochemical ring-opening reaction of the spiropyran 1',3',3',-trimethylspiro-[-2H-1-benzopyran-2,2'-indoline] (also known as BIPS) in tetrachloroethene, using 70 fs UV excitation pulses and probing with 100 fs mid-IR pulses. The time evolution of the transient IR absorption spectrum was monitored over the first 100 ps after UV excitation. We conclude that the merocyanine product is formed with a 28 ps time constant, contrasting with a 0.9 ps time constant obtained in previous investigations where the rise of absorption bands at visible wavelengths were associated with product formation. We deduce from the observed strong recovery of the spiropyran IR absorption bleaches that, in tetrachloroethene, the main decay channel for the S(1) excited state of the spiropyran BIPS, is internal conversion to the spiropyran S(0) state with a quantum yield of > or = 0.9. This puts an upper limit of 0.1 to the quantum yield of the photochemical ring-opening reaction.
The ring-opening dynamics of the photochromic switch 1',3'-dihydro-1',3',3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indole] in tetrachloroethene is studied with both femtosecond time-resolved ultraviolet (UV)/visible and UV/mid-infrared (IR) pump-probe spectroscopy. During the first picosecond we identify two new transient features in the UV/vis experiments, the first of which we assign to spiropyran S1 --> S(n) absorption (lifetime < or = 0.2 ps). The second feature (lifetime 0.5 +/- 0.2 ps) we tentatively assign to the merocyanine T2 state. After 1 ps both probing methods show biexponential merocyanine formation kinetics, with average time constants of 17 +/- 3 and 350 +/- 20 ps. In the UV/IR experiments, the initial dynamics show more dispersion in formation times than in the UV/vis measurements, whereas the slower time constant is the same in both. A weak transient IR signal at approximately 1360 cm(-1) demonstrates that this biexponentiality is caused by a sequential isomerization between two merocyanine species. Lifetimes provide evidence that the merocyanine S1 state is not involved in the photochemical reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.