Vaccinia virus, a close relative of the causative agent of smallpox, exploits actin polymerization to enhance its cell-to-cell spread. We show that actin-based motility of vaccinia is initiated only at the plasma membrane and remains associated with it. There must therefore be another form of cytoplasmic viral transport, from the cell centre, where the virus replicates, to the periphery. Video analysis reveals that GFP-labelled intracellular enveloped virus particles (IEVs) move from their perinuclear site of assembly to the plasma membrane on microtubules. We show that the viral membrane protein A36R, which is essential for actin-based motility of vaccinia, is also involved in microtubule-mediated movement of IEVs. We further show that conventional kinesin is recruited to IEVs via the light chain TPR repeats and is required for microtubule-based motility of the virus. Vaccinia thus sequentially exploits the microtubule and actin cytoskeletons to enhance its cell-to-cell spread.
YopH is translocated by cell-surface-bound bacteria through the plasma membrane to the cytosol of the HeLa cell. The transfer mechanism is contact dependent and polarizes the translocation to only occur at the contact zone between the bacterium and the target cell. More than 99% of the PTPase activity is associated with the HeLa cells. In contrast to the wild-type strain, the yopBD mutant cannot deliver YopH to the cytosol. Instead YopH is deposited in localized areas in the proximity of cell-associated bacteria. A yopN mutant secretes 40% of the total amount of YopH to the culture medium, suggesting a critical role of YopN in regulation of the polarized translocation. Evidence for a region in YopH important for its translocation through the plasma membrane of the target cell but not for secretion from the pathogen is provided.
Type III‐mediated translocation of Yop effectors is an essential virulence mechanism of pathogenic YersiniaLcrV is the only protein secreted by the type III secretion system that induces protective immunity. LcrV also plays a significant role in the regulation of Yop expression and secretion. The role of LcrV in the virulence process has, however, remained elusive on account of its pleiotropic effects. Here, we show that anti‐LcrV antibodies can block the delivery of Yop effectors into the target cell cytosol. This argues strongly for a critical role of LcrV in the Yop translocation process. Additional evidence supporting this role was obtained by genetic analysis. LcrV was found to be present on the bacterial surface before the establishment of bacteria target cell contact. These findings suggest that LcrV serves an important role in the initiation of the translocation process and provides one possible explanation for the mechanism of LcrV‐induced protective immunity.
SummaryIntroduction of anti-host factors into eukaryotic cells by extracellular bacteria is a strategy evolved by several Gram-negative pathogens. In these pathogens, the transport of virulence proteins across the bacterial membranes is governed by closely related type III secretion systems. For pathogenic Yersinia, the protein transport across the eukaryotic cell membrane occurs by a polarized mechanism requiring two secreted proteins, YopB and YopD. YopB was recently shown to induce the formation of a pore in the eukaryotic cell membrane, and through this pore, translocation of Yop effectors is believed to occur (Hå kansson et al., 1996b). We have previously shown that YopK of Yersinia pseudotuberculosis is required for the development of a systemic infection in mice. Here, we have analysed the role of YopK in the virulence process in more detail. A yopK-mutant strain was found to induce a more rapid YopE-mediated cytotoxic response in HeLa cells as well as in MDCK-1 cells compared to the wild-type strain. We found that this was the result of a cell-contact-dependent increase in translocation of YopE into HeLa cells. In contrast, overexpression of YopK resulted in impaired translocation. In addition, we found that YopK also influenced the YopBdependent lytic effect on sheep erythrocytes as well as on HeLa cells. A yopK-mutant strain showed a higher lytic activity and the induced pore was larger
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.