This study evaluated the potential of silver nanoparticles (AgNano) as an antimicrobial growth-promoting supplement for broiler chickens. One hundred forty-four seven-day-old broiler chicks were distributed randomly to AgNano treatments at 0, 10 and 20 mg/kg (Control, Group AgNano10, and Group AgNano20, respectively) provided via the drinking water from day 7 to 36 post-hatching. Body weight and feed consumption were measured weekly. In addition, balance and respiration experiments were carried out to determine nitrogen (N) utilisation and energy retention. At days 22 and 36, blood samples and intestinal content were collected to evaluate the effects of AgNano on plasma concentration of immunoglobulins and the intestinal microflora, respectively. The provision of water solutions containing different concentrations of AgNano had no effect on postnatal growth performance and the energy metabolism of broiler chickens. However, in Group AgNano10 N intake (p = 0.05) and retention (p = 0.03) was increased, but N excretion and efficiency of utilisation was not affected. The populations of bacteria in the intestinal samples were not affected by AgNano supplementation. The concentration of immunoglobulin (IgG) in the blood plasma of broilers supplemented with AgNano decreased at day 36 (p = 0.012). The results demonstrated that AgNano affects N utilisation and plasma IgG concentration; however, it does not influence the microbial populations in the digestive tract, the energy metabolism and growth performance of chickens.
Graphene family materials have unique properties, which make them valuable for a range of applications. The antibacterial properties of graphene have been reported; however, findings have been contradictory. This study reports on the antimicrobial proprieties of three different graphene materials (pristine graphene (pG), graphene oxide (GO), and reduced graphene oxide (rGO)) against the food-borne bacterial pathogens Listeria monocytogenes and Salmonella enterica. A high concentration (250 μg/mL) of all the analyzed graphenes completely inhibited the growth of both pathogens, despite their difference in bacterial cell wall structure. At a lower concentration (25 μg/mL), similar effects were only observed with GO, as growth inhibition decreased with pG and rGO at the lower concentration. Interaction of the nanoparticles with the pathogenic bacteria was found to differ depending on the form of graphene. Microscopic imaging demonstrated that bacteria were arranged at the edges of pG and rGO, while with GO, they adhered to the nanoparticle surface. GO was found to have the highest antibacterial activity.
It has been demonstrated that the content of certain amino acids in eggs is not sufficient to fully support embryonic development. One possibility to supply the embryo with extra nutrients and energy is in ovo administration of nutrients. Nanoparticles of diamond are highly biocompatible non-toxic carbonic structures, and we hypothesized that bio-complexes of diamond nanoparticles with l-glutamine may affect molecular responses in breast muscle. The objective of the investigation was to evaluate the effect of diamond nanoparticle (ND) and l-glutamine (Gln) on expression of growth and differentiation factors of chicken embryo pectoral muscles. ND, Gln, and Gln/ND solutions (50 mg/L) were injected into fertilized broiler chicken eggs at the beginning of embryogenesis. Muscle tissue was dissected at day 20 of incubation and analysed for gene expression of FGF2, VEGF-A, and MyoD1. ND and especially Gln/ND up-regulated expression of genes related to muscle cell proliferation (FGF2) and differentiation (MyoD1). Furthermore, the ratio between FGF2 and MyoD1 was highest in the Gln/ND group. At the end of embryogenesis, Gln/ND enhanced both proliferation and differentiation of pectoral muscle cells and differentiation dominated over proliferation. These preliminary results suggest that the bio-complex of glutamine and diamond nanoparticles may accelerate growth and maturation of muscle cells.
IntroductionGliomas are the most aggressive and common primary tumors of the central nervous system (CNS). Many side effects of drugs containing platinum and their poor penetration of the CNS are major drawbacks in glioma therapy. The aim of the study was to investigate and compare the toxicity of platinum nanoparticles and cisplatin and their anticancer properties in examination with a U87 glioma cell line and tumor.Material and methodsNanoparticles of platinum (NP-Pt) and cisplatin were incubated with U87 glioma cells or injected directly into tumor tissue. The biological properties of NP-Pt and cisplatin were compared through the morphology, viability, mortality, genotoxicity and the type of cell death of U87 glioma cells, the morphology and ultrastructure of glioma tumor, and expression of caspase-3, p53 and PCNA mRNA.ResultsNP-Pt at concentrations of 0.14 µM/ml, 0.29 µM/ml and 0.65 µM/ml had a harmful influence on viability of U87 glioblastoma multiforme (GBM) cells, but also showed genotoxic properties as well as a pro-apoptotic effect on cancer cells. It was found that NP-Pt decreased the weight and volume of U87 GBM tumor tissue and caused pathomorphological changes in the ultrastructure and morphology of tumor tissue, but they also upregulated p53 and caspase-3 mRNA expression.ConclusionsThe comparison between the effectiveness of glioblastoma treatment by NP-Pt vs cisplatin showed promising results for future studies. The results indicate that the properties of NP-Pt might be utilized for brain cancer therapy.
Due to their excellent biocompatibility, carbon nanoparticles have been widely investigated for prospective biomedical applications. However, their impact on an organism with prolonged exposure is still not well understood. Here, we performed an experiment investigating diamond, graphene oxide and graphite nanoparticles, which were repeatedly administrated intraperitoneally into Wistar rats for four weeks. Some of the animals was sacrificed after the last injection, whereas the rest were sacrificed twelve weeks after the last exposure. We evaluated blood morphology and biochemistry, as well as the redox and inflammatory state of the liver. The results show the retention of nanoparticles within the peritoneal cavity in the form of prominent aggregates in proximity to the injection site, as well as the presence of some nanoparticles in the mesentery. Small aggregates were also visible in the liver serosa, suggesting possible transportation to the liver. However, none of the tested nanoparticles affected the health of animals. This lack of toxic effect may suggest the potential applicability of nanoparticles as drug carriers for local therapies, ensuring accumulation and slow release of drugs into a targeted tissue without harmful systemic side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.