Chondrogenic promotion by rhGDF5 with or without rhTGFbeta3 was studied in pellet culture of human mesenchymal stem cells (HMSCs). A synergy between rhGDF5 and rhTGFbeta3 was observed in promoting chondrogenesis. rhBMP2, rhBMP6, rhBMP7 and rhTGFbeta1 were further tested and showed the same effect. To explore the mechanism, the expression of TGFbetatype I and II receptors, ALK5, ALK2, ALK3, ALK6, TGFbetaRII, BMPRII, ActRII was studied. ALK6 showed increase by the rhTGFbeta1 or rhTGFbeta3 treatment. ALK6 protein expression also showed increase by rhTGFbeta3. rhTGFbeta1/rhTGFbeta3 induced ALK6 up-regulation was inhibited by SD-208, a TGFbeta type I receptor inhibitor. Chondrogenesis by rhTGFbetal/rhTGFbeta3 or the combination between rhTGFbetal/rhTGFbeta3 and rhGDF5 also was diminished by SD-208. SMAD1/5/8 phosphorylation in nascent human mesenchymal stem cells (HMSCs) was stimulated weakly by rhGDF5 but strongly by rhBMP7. The rhGDF5 stimulated SMAD1/5/8 phosphorylation was enhanced by rhTGFbetal/rhTGFbeta3 but inhibited by SD-208. The rhBMP7 stimulated SMAD1/5/8 phosphorylation did not show influence by rhTGFbeta3 and SD-208. Our results indicated the potential involvement of ALK6 activation by rhTGFbetas in the synergy between rhTGFbetas and rhBMPs.
Administration of autoantigens through DNA immunizations or via the oral route can prevent progression of islet destruction and lower the incidence of type 1 diabetes in animal models. This beneficial effect is mediated by autoreactive regulatory CD4 lymphocytes, and it is known that their induction depends on the precise dose and route of antigen administration. However, it is not clear which endogenous factors determine when such immunizations lead to activation of regulatory versus aggressive autoreactive lymphocytes and how a deleterious outcome can be avoided. Here we describe novel observations made in an animal model for virally induced type 1 diabetes, showing that the endogenous expression levels of the islet antigens and glutamic acid decarboxylase determine whether immunization with these antigens is beneficial or detrimental. Lower expression levels in g -cells support immune regulation resulting in induction of autoreactive, regulatory cells characterized by increased IL-4 production (Th2-like), whereas higher levels favor Th1-like autoaggressive responses characterized by augmented IFN-+ generation. Co-immunization with an IL-4-expessing plasmid reduces the risk of augmenting autoaggression and in this way increases the safety margin of this immune-based therapy. Our findings will be of importance for designing safe antigen-specific interventions for human type 1 diabetes.
Explosions remain the leading cause of death and injury to combatants in conflict. The current 'Global War on Terror' has resulted in a shift of explosive-related injuries from the battlefield into civilian centres. Despite musculoskeletal injuries being the most common injury witnessed in blast, there remains little research into the effects of blast on this system. In order to develop new treatment regimens and mitigation systems, there is a requirement to have a better understanding of skeletal trauma in this unique environment. The aim of this review article is to deconstruct the complex injury mechanisms witnessed in blast and relate them to its effects on the musculoskeletal system.
Avian brood parasites such as cuckoos or cowbirds lay their eggs in the nests of other (host) species. To fool their hosts, parasites evolved striking adaptations such as very fast egg-laying or eggs that mimic host eggs. Here, we present video-recordings where the common cuckoo females kill nestlings in host nests. This interesting behaviour has been also observed in other brood parasitic species and we speculate about its significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.