Remodelling of the human embryo at implantation is indispensable for successful pregnancy. Yet it has remained mysterious because of the experimental hurdles that beset the study of this developmental phase. Here, we establish an in vitro system to culture human embryos through implantation stages in the absence of maternal tissues and reveal the key events of early human morphogenesis. These include segregation of the pluripotent embryonic and extra-embryonic lineages and morphogenetic re-arrangements leading to: generation of a bi-laminar disc, formation of a pro-amniotic cavity within the embryonic lineage, appearance of the prospective yolk sac, and trophoblast differentiation. Using human embryos and human pluripotent stem cells, we show that the reorganisation of the embryonic lineage is mediated by cellular polarisation leading to cavity formation. Together, our results indicate that the critical remodelling events at this stage of human development are embryo-autonomous highlighting the remarkable and unanticipated self-organising properties of human embryos.
Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous largescale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.Cancer forms and progresses through a series of critical transitions-from pre-malignant to malignant states, from locally contained to metastatic disease, and from treatment-responsive to treatment-resistant tumors (Figure 1). Although specifics differ across tumor types and patients, all transitions involve complex dynamic interactions between diverse pre-malignant, malignant, and non-malignant cells (e.g., stroma cells and immune cells), often organized in specific patterns within the tumor
SummaryThe major and essential objective of pre-implantation development is to establish embryonic and extra-embryonic cell fates. To address when and how this fundamental process is initiated in mammals, we characterize transcriptomes of all individual cells throughout mouse pre-implantation development. This identifies targets of master pluripotency regulators Oct4 and Sox2 as being highly heterogeneously expressed between blastomeres of the 4-cell embryo, with Sox21 showing one of the most heterogeneous expression profiles. Live-cell tracking demonstrates that cells with decreased Sox21 yield more extra-embryonic than pluripotent progeny. Consistently, decreasing Sox21 results in premature upregulation of the differentiation regulator Cdx2, suggesting that Sox21 helps safeguard pluripotency. Furthermore, Sox21 is elevated following increased expression of the histone H3R26-methylase CARM1 and is lowered following CARM1 inhibition, indicating the importance of epigenetic regulation. Therefore, our results indicate that heterogeneous gene expression, as early as the 4-cell stage, initiates cell-fate decisions by modulating the balance of pluripotency and differentiation.
The human body at cellular resolution: the NIH Human Biomolecular Atlas Program HuBMAP consortium* Transformative technologies are enabling the construction of three-dimensional maps of tissues with unprecedented spatial and molecular resolution. Over the next seven years, the NIH Common Fund Human Biomolecular Atlas Program (HuBMAP) intends to develop a widely accessible framework for comprehensively mapping the human body at singlecell resolution by supporting technology development, data acquisition, and detailed spatial mapping. HuBMAP will integrate its efforts with other funding agencies, programs, consortia, and the biomedical research community at large towards the shared vision of a comprehensive, accessible three-dimensional molecular and cellular atlas of the human body, in health and under various disease conditions. t he human body is an incredible machine. Trillions of cells, organized across an array of spatial scales and a multitude of functional states, contribute to a symphony of physiology. While we broadly know how cells are organized in most tissues, a comprehensive understanding of the cellular and molecular states and interactive networks resident in the tissues and organs, from organizational and functional perspectives, is lacking. The specific three-dimensional organization of different cell types, together with the effects of cell-cell and cell-matrix interactions in their natural milieu, have a profound impact on normal function, natural ageing, tissue remodelling, and disease progression in different tissues and organs. Recently, new technologies have enabled the molecular characterization of a multitude of cell types 1-4 and mapping of their spatial relationships in complex tissues at unprecedented scale and single-cell resolution. These advances create the opportunity to build a high-resolution atlas of three-dimensional maps of human tissues and organs. HuBMAP (https://commonfund.nih.gov/hubmap) is an NIHsponsored program with the goals of developing an open framework and technologies for mapping the human body at cellular resolution as well as generating foundational maps for several tissues obtained from normal individuals across a wide range of ages. A previous NIH-sponsored project, GTEx 5 , examined DNA variants and bulk tissue expression patterns across approximately a thousand individuals, but HuBMAP is a distinct project focused on generating molecular maps that are spatially resolved at the single-cell level but using samples from a more limited number of people. To achieve these goals, HuBMAP has been designed as a cohesive and collaborative organization, with a culture of openness and sharing using team science-based approaches 6. The HuBMAP Consortium (https://hubmapconsortium.org/) will actively work with other ongoing initiatives including the Human Cell Atlas 7 , Human Protein Atlas 8 , LIfeTime (https://lifetime-fetflagship.eu/), and related NIH-funded consortia that are mapping specific organs (including the brain 9 , lungs (https://www.lungmap.net/), kidney (https...
Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes. Here, we tested this model by analyzing the ultrastructural morphology, kinetics of cargo transport, and stability of the APPL1 compartment over time. We found that APPL1 resides on a tubulo-vesicular compartment that is capable of sorting cargo for recycling or degradation and that displays long lifetimes, all features typical of early endosomes. Fitting mathematical models to experimental data rules out maturation of APPL1 vesicles into EEA1 endosomes as a primary mechanism for cargo transport. Our data suggest instead that APPL1 endosomes represent a distinct population of Rab5-positive sorting endosomes, thus providing important insights into the compartmental organization of the early endocytic pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.