We present a model for diauxic growth of denitrifying bacteria in which nitrate reductase synthesis kinetics dominate the overall growth kinetics. The model is based on the assumption of the existence of a nitrate respiration operon, thereby linking the rate of nitrate uptake to the activity of nitrate reductase. We show that this approach can model diauxic growth of Pseudomonas denitrificans by conducting experiments in which nitrate reductase activity was measured during both lag and ensuing exponential growth phases. We consistently observed the pattern of low nitrate reductase enzyme activity during the lag phase, increasing before the onset of growth. By fitting model parameters we were able to successfully match experimental data for growth, nitrate uptake, and enzyme activity level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.