In a mega city like Moscow, both municipal solid waste management and energy systems are managed in an unsustainable way. Therefore, utilizing the municipal solid waste to generate energy will help the city in achieving sustainability by decreasing greenhouse gases emissions and the need for land to dispose the solid waste. In this study, various Waste to Energy (WTE) options were evaluated using analytical hierarchy process (AHP) to select the most appropriate technology for the Moscow region. The developed AHP model consists of 4 levels, which assessed four WTE technologies, namely landfill biogas, anaerobic digestion, incineration, and refuse derived fuel (RDF), using four criteria and nine subcriteria. The pairwise comparison was achieved by soliciting 16 experts’ opinions. The priority weights of various criteria, subcriteria, and alternatives were determined using Expert Choice Software. The developed model indicated that landfill biogas is the preferred option with a global weight of 0.448, followed by the anaerobic digestion with a weight of 0.320 and incineration with a weight of 0.138, while the least preferred technology is the RDF with a weight of 0.094. Sensitivity analysis has shown that the priorities of WTE alternatives are sensitive for the environmental and technical criteria. The developed AHP model can be used by the decision makers in Moscow in the field of WTE.
Ball-milled hydroreactive powders of Mg-Al scrap with 20 wt.% additive (Wood’s alloy, KCl, and their mixture) and with no additives were manufactured. Their hydrogen yields and reaction rates in a 3.5 wt.% NaCl aqueous solution at 15–35 °С were compared. In the beginning of the reaction, samples with KCl (20 wt.%) and Wood’s alloy (10 wt.%) with KCl (10 wt.%) provided the highest and second-highest reaction rates, respectively. However, their hydrogen yields after 4 h were correspondingly the lowest and second-lowest percentages—(45.6 ± 4.4)% and (56.0 ± 1.2)% at 35 °С. At the same temperature, samples with 20 wt.% Wood’s alloy and with no additives demonstrated the highest hydrogen yields of (73.5 ± 10.0)% and (70.6 ± 2.5)%, correspondingly, while their respective maximum reaction rates were the lowest and second-lowest. The variations in reaction kinetics for the powders can be explained by the difference in their particle sizes (apparently affecting specific surface area), the crystal lattice defects accumulated during ball milling, favoring pitting corrosion, the morphology of the solid reaction product covering the particles, and the contradicting effects from the potential formation of reaction-enhancing microgalvanic cells intended to induce anodic dissolution of Mg in conductive media and reaction-hindering crystal-grain-screening compounds of the alloy and metal scrap components.
As an approach to move towards a sustainable waste management system, circular economy (CE) is gaining an increased interest by most countries. Russia is among the countries where the CE is one of the priorities of the country’s economy, with a market value of the CE is USD$ 755.05 billion. However, such a strategy is facing challenges and barriers which are country specific. This study aimed to review the status of the CE in Russia and to identify the obstacles that are hindering the country from achieving its objectives. Moreover, the study aimed to evaluate the role of eco-industrial parks (EIP) in Russia in promoting the CE model. The study findings indicate that the CE adoption in Russia is still in its early stages. To create an enabling environment for CE promotion in Russia, there is a need to overcome several institutional, technical, and social barriers. Russian higher educational institutions are playing a major role to create the critical mass of experts that will help the country transition towards a CE model. Using life cycle assessment (LCA) to analyze the environmental performance of one of the EIPs in Russia revealed that such enterprises are more sustainable than the business-as-usual scenarios, under which the generated solid waste is buried into landfill. The comparison shows that by diverting 1.813 million tons of mixed municipal solid waste that is generated in Moscow to EIP would lead to a reduction in environmental impacts. The total global warming potential of the EIP scenario is less, by 59%, than the direct landfilling scenario, while the eutrophication, acidification, smog, and ozone depletion are less, and fossil fuel depletion impacts under the second scenario are less, by 81%, 26%, 18%, and 81%, respectively. Furthermore, the health impacts including carcinogenic, non-carcinogenic, eco-toxicity were found to be 92%, 96%, and 96%, respectively, less than the baseline scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.