A series of piperidine‐naphthalene monoimide, donor−acceptor (D−A) chromophores and their thionated derivatives were prepared. The physical properties of the chromophores were studied by spectroscopic and electrochemical measurements and DFT calculations. Relative to their non‐thionated counterparts, the thionated D−A chromophores display enhanced visible‐light absorption and 1O2‐sensitization quantum yields and negligible fluorescence, suggesting facile triplet formation of this class of molecules. This behavior originates from the significant n‐π* character in the singlet excited state, resulting in large spin‐orbit coupling between the singlet/triplet manifolds regardless of the degree of D/A interactions. With the electrochemically active D/A moieties and high triplet energy, the thionated chromophores can be used as amphoteric photosensitizers to catalyze reductive and oxidative photoreactions with efficiency comparable to Ru(bpy)32+ as the sensitizer. Our results demonstrate that thiocarbonylation can be utilized in amide/imide‐containing D−A chromophores to provide a wide range of heavy‐atom‐free redox‐active photosensitizers.
The past decade has witnessed a surge of biomedical and materials applications of thiocarbonyl molecules (R2C=S), such as in photodynamic theory, organic field-effect transistors, and rechargeable batteries. The success of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.