Reducing uncertainties about carbon cycling is important in the Arctic where rapid environmental changes contribute to enhanced mobilization of carbon. Here we quantify soil organic carbon (SOC) contents of permafrost soils along the Yukon Coastal Plain and determine the annual fluxes from coastal erosion. Different terrain units were assessed based on surficial geology, morphology, and ground ice conditions. To account for the volume of wedge ice and massive ice in a unit, SOC contents were reduced by 19% and sediment contents by 16%. The SOC content in a 1 m2 column of soil varied according to the height of the bluff, ranging from 30 to 662 kg, with a mean value of 183 kg. Forty‐four per cent of the SOC was within the top 1 m of soil and values varied based on surficial materials, ranging from 30 to 53 kg C/m3, with a mean of 41 kg. Eighty per cent of the shoreline was erosive with a mean annual rate of change of −0.7 m/yr. This resulted in a SOC flux per meter of shoreline of 132 kg C/m/yr, and a total flux for the entire 282 km of the Yukon coast of 35.5 × 106 kg C/yr (0.036 Tg C/yr). The mean flux of sediment per meter of shoreline was 5.3 × 103 kg/m/yr, with a total flux of 1,832 × 106 kg/yr (1.832 Tg/yr). Sedimentation rates indicate that approximately 13% of the eroded carbon was sequestered in nearshore sediments, where the overwhelming majority of organic carbon was of terrestrial origin.
Retrogressive thaw slumps (RTSs) are among the most active landforms in the Arctic; their number has increased significantly over the past decades. While processes initiating discrete RTSs are well identified, the major terrain controls on the development of coastal RTSs at a regional scale are not yet defined. Our research reveals the main geomorphic factors that determine the development of RTSs along a 238 km segment of the Yukon Coast, Canada. We (1) show the current extent of RTSs, (2) ascertain the factors controlling their activity and initiation, and (3) explain the spatial differences in the density and areal coverage of RTSs. We mapped and classified 287 RTSs using high‐resolution satellite images acquired in 2011. We highlighted the main terrain controls over their development using univariate regression trees model. Coastal geomorphology influenced both the activity and initiation of RTSs: active RTSs and RTSs initiated after 1972 occurred primarily on terrains with slope angles greater than 3.9° and 5.9°, respectively. The density and areal coverage of RTSs were constrained by the volume and thickness of massive ice bodies. Differences in rates of coastal change along the coast did not affect the model. We infer that rates of coastal change averaged over a 39 year period are unable to reflect the complex relationship between RTSs and coastline dynamics. We emphasize the need for large‐scale studies of RTSs to evaluate their impact on the ecosystem and to measure their contribution to the global carbon budget.
To better understand the reaction of Arctic coasts to increasing environmental pressure, coastal changes along a 210‐km length of the Yukon Territory coast in north‐west Canada were investigated. Shoreline positions were acquired from aerial and satellite images between 1951 and 2011. Shoreline change rates were calculated for multiple time periods along the entire coast and at six key sites. Additionally, Differential Global Positioning System (DGPS) measurements of shoreline positions from seven field sites were used to analyze coastal dynamics from 1991 to 2015 at higher spatial resolution. The whole coast has a consistent, spatially averaged mean rate of shoreline change of 0.7 ± 0.2 m/a with a general trend of decreasing erosion from west to east. Additional data from six key sites shows that the mean shoreline change rate decreased from −1.3 ± 0.8 (1950s–1970s) to −0.5 ± 0.6 m/a (1970s–1990s). This was followed by a significant increase in shoreline change to −1.3 ± 0.3 m/a in the 1990s to 2011. This increase is confirmed by DGPS measurements that indicate increased erosion rates at local rates up to −8.9 m/a since 2006. Ground surveys and observations with remote sensing data indicate that the current rate of shoreline retreat along some parts of the Yukon coast is higher than at any time before in the 64‐year‐long observation record. Enhanced availability of material in turn might favor the buildup of gravel features, which have been growing in extent throughout the last six decades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.