The role of circulating tumor cells (CTCs), tumor microenvironment (TME), and the immune system in the formation of metastasis is evident, yet the details of their interactions remain unknown. This study aimed at exploring the immunotranscriptome of primary tumors associated with the status of CTCs in breast cancer (BCa) patients. The expression of 730 immune-related genes in formalin-fixed paraffin-embedded samples was analyzed using the multigenomic NanoString technology and correlated with the presence and the phenotype of CTCs. Upregulation of 37 genes and downregulation of 1 gene were observed in patients characterized by a mesenchymal phenotype of CTCs when compared to patients with epithelial CTCs. The upregulated genes were involved in NF-kappa B signaling and in the production of type I interferons. The clinical significance of the differentially expressed genes was evaluated using The Cancer Genome Atlas (TCGA) data of a breast invasive carcinoma (BRCA) cohort. Five of the upregulated genes—PSMD7, C2, IFNAR1, CD84, and CYLD—were independent prognostic factors in terms of overall and disease-free survival. To conclude, our data identify a group of genes that are upregulated in BCa patients with mesenchymal CTCs and reveal their prognostic potential, thus indicating that they merit further investigation.
Influenza A virus infections are the major public health concern and cause significant morbidity and mortality each year worldwide. Vaccination is the main strategy of influenza epidemic prevention. However, seasonal vaccines induce strain-specific immunity and must be reformulated annually based on prediction of the strains that will circulate in the next season. Thus, it is essential to develop vaccines that would induce broad and persistent immunity to influenza viruses. Hemagglutinin is the major surface antigen of the influenza virus. Recent studies revealed the importance of HA stalk-specific antibodies in neutralization of different influenza virus strains. Therefore, it is important to design an immunogen that would focus the immune response on the HA stalk domain in order to elicit neutralizing antibodies. In the present study, we report characterization of a conserved truncated protein, potentially a universal influenza virus antigen from the H5N1 Highly Pathogenic Avian Influenza A virus strain. Our results indicate that exposure of the HA stalk domain containing conserved epitopes results in cross reactivity with different antibodies (against group 1 and 2 HAs). Additionally, we conclude that HA stalk domain contains not only conformational epitopes recognized by universal FI6 antibody, but also linear epitopes recognized by other antibodies. Abbreviations: HA, hemagglutinin; PAb, polyclonal antibody; MAb, monoclonal antibody; HPAI, highly pathogenic avian influenza; pH1N1, pandemic strain H1N1; rHA, recombinant hemagglutinin; WT AcNPV, Autographa californica nuclear polyhedrosis virus wild type strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.