Tremendous efforts have been made over the past few decades to discover novel cancer biomarkers for use in clinical practice. However, a striking discrepancy exists between the effort directed toward biomarker discovery and the number of markers that make it into clinical practice. One of the confounding issues in translating a novel discovery into clinical practice is that quite often the scientists working on biomarker discovery have limited knowledge of the analytical, diagnostic, and regulatory requirements for a clinical assay. This review provides an introduction to such considerations with the aim of generating more extensive discussion for study design, assay performance, and regulatory approval in the process of translating new proteomic biomarkers from discovery into cancer diagnostics. We first describe the analytical requirements for a robust clinical biomarker assay, including concepts of precision, trueness, specificity and analytical interference, and carryover. We next introduce the clinical considerations of diagnostic accuracy, receiver operating characteristic analysis, positive and negative predictive values, and clinical utility. We finish the review by describing components of the FDA approval process for protein-based biomarkers, including classification of biomarker assays as medical devices, analytical and clinical performance requirements, and the approval process workflow. While we recognize that the road from biomarker discovery, validation, and regulatory approval to the translation into the clinical setting could be long and difficult, the reward for patients, clinicians and scientists could be rather significant.
IscU is a scaffold protein that functions in iron-sulfur cluster assembly and transfer. Its critical importance has been recently underscored by the finding that a single intronic mutation in the human iscu gene is associated with a myopathy resulting from deficient succinate dehydrogenase and aconitase [Mochel, F., Knight, M. A., Tong, W. H., Hernandez, D., Ayyad, K., Taivassalo, T., Andersen, P. M., Singleton, A., Rouault, T. A., Fischbeck, K. H., and Haller, R. G. (2008) Am. J. Hum. Genet. 82, 652-660]. IscU functions through interactions with a chaperone protein HscA and a cochaperone protein HscB. To probe the molecular basis for these interactions, we have used NMR spectroscopy to investigate the solution structure of IscU from Escherichia coli and its interaction with HscB from the same organism. We found that wild-type apo-IscU in solution exists as two distinct conformations: one largely disordered and one largely ordered except for the metal binding residues. The two states interconvert on the millisecond time scale. The ordered conformation is stabilized by the addition of zinc or by the single-site IscU mutation, D39A. We used apo-IscU(D39A) as a surrogate for the folded state of wild-type IscU and assigned its NMR spectrum. These assignments made it possible to identify the region of IscU with the largest structural differences in the two conformational states. Subsequently, by following the NMR signals of apo-IscU(D39A) upon addition of HscB, we identified the most perturbed regions as the two N-terminal β-strands and the C-terminal R-helix. On the basis of these results and analysis of IscU sequences from multiple species, we have identified the surface region of IscU that interacts with HscB. We conclude that the IscU-HscB complex exists as two (or more) distinct states that interconvert at a rate much faster than the rate of dissociation of the complex and that HscB binds to and stabilizes the ordered state of apo-IscU.
The interaction between IscU and HscB is critical for successful assembly of iron−sulfur clusters. NMR experiments were performed on HscB to investigate which of its residues might be part of the IscU binding surface. Residual dipolar couplings (1DHN and 1DCαHα) indicated that the crystal structure of HscB [Cupp-Vickery, J. R., and Vickery, L. E. (2000) Crystal structure of Hsc20, a J-type cochaperone from Escherichia coli, J. Mol. Biol. 304, 835−845] faithfully represents its solution state. NMR relaxation rates (15N R1, R2) and 1H−15N heteronuclear NOE values indicated that HscB is rigid along its entire backbone except for three short regions which exhibit flexibility on a fast time scale. Changes in the NMR spectrum of HscB upon addition of IscU mapped to the J-domain/C-domain interface, the interdomain linker, and the C-domain. Sequence conservation is low in the interface and in the linker, and NMR changes observed for these residues likely result from indirect effects of IscU binding. NMR changes observed in the conserved patch of residues in the C-domain (L92, M93, L96, E97, E100, E104, and F153) were suggestive of a direct interaction with IscU. To test this, we replaced several of these residues with alanine and assayed for the ability of HscB to interact with IscU and to stimulate HscA ATPase activity. HscB(L92A,M93A,F153A) and HscB(E97A,E100A,E104A) both showed decreased binding affinity for IscU; the (L92A,M93A,F153A) substitution also strongly perturbed the allosteric interaction within the HscA·IscU·HscB ternary complex. We propose that the conserved patch in the C-domain of HscB is the principal binding site for IscU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.