BACKGROUND Cancers arise from multiple acquired mutations, which presumably occur over many years. Early stages in cancer development might be present years before cancers become clinically apparent. METHODS We analyzed data from whole-exome sequencing of DNA in peripheral-blood cells from 12,380 persons, unselected for cancer or hematologic phenotypes. We identified somatic mutations on the basis of unusual allelic fractions. We used data from Swedish national patient registers to follow health outcomes for 2 to 7 years after DNA sampling. RESULTS Clonal hematopoiesis with somatic mutations was observed in 10% of persons older than 65 years of age but in only 1% of those younger than 50 years of age. Detectable clonal expansions most frequently involved somatic mutations in three genes (DNMT3A, ASXL1, and TET2) that have previously been implicated in hematologic cancers. Clonal hematopoiesis was a strong risk factor for subsequent hematologic cancer (hazard ratio, 12.9; 95% confidence interval, 5.8 to 28.7). Approximately 42% of hematologic cancers in this cohort arose in persons who had clonality at the time of DNA sampling, more than 6 months before a first diagnosis of cancer. Analysis of bone marrow–biopsy specimens obtained from two patients at the time of diagnosis of acute myeloid leukemia revealed that their cancers arose from the earlier clones. CONCLUSIONS Clonal hematopoiesis with somatic mutations is readily detected by means of DNA sequencing, is increasingly common as people age, and is associated with increased risks of hematologic cancer and death. A subset of the genes that are mutated in patients with myeloid cancers is frequently mutated in apparently healthy persons; these mutations may represent characteristic early events in the development of hematologic cancers. (Funded by the National Human Genome Research Institute and others.)
By analyzing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we have demonstrated a polygenic burden primarily arising from rare (<1/10,000), disruptive mutations distributed across many genes. Especially enriched genesets included the voltage-gated calcium ion channel and the signaling complex formed by the activity-regulated cytoskeleton-associated (ARC) scaffold protein of the postsynaptic density (PSD), sets previously implicated by genome-wide association studies (GWAS) and copy-number variation (CNV) studies. Similar to reports in autism, targets of the fragile × mental retardation protein (FMRP, product of FMR1) were enriched for case mutations. No individual gene-based test achieved significance after correction for multiple testing and we did not detect any alleles of moderately low frequency (~0.5-1%) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene mapping paradigms in neuropsychiatric disease.
Polygenic risk scores have shown great promise in predicting complex disease risk and will become more accurate as training sample sizes increase. The standard approach for calculating risk scores involves linkage disequilibrium (LD)-based marker pruning and applying a p value threshold to association statistics, but this discards information and can reduce predictive accuracy. We introduce LDpred, a method that infers the posterior mean effect size of each marker by using a prior on effect sizes and LD information from an external reference panel. Theory and simulations show that LDpred outperforms the approach of pruning followed by thresholding, particularly at large sample sizes. Accordingly, predicted R(2) increased from 20.1% to 25.3% in a large schizophrenia dataset and from 9.8% to 12.0% in a large multiple sclerosis dataset. A similar relative improvement in accuracy was observed for three additional large disease datasets and for non-European schizophrenia samples. The advantage of LDpred over existing methods will grow as sample sizes increase.
Schizophrenia is a heritable disorder with substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases, 6,243 controls) followed by meta-analysis with prior schizophrenia GWAS (8,832 cases, 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls, and 581 trios). In total, 22 regions met genome-wide significance (14 novel and one previously implicated in bipolar disorder). The results strongly implicate calcium signaling in the etiology of schizophrenia, and include genome-wide significant results for CACNA1C and CACNB2 whose protein products interact. We estimate that ∼8,300 independent and predominantly common SNPs contribute to risk for schizophrenia and that these collectively account for most of its heritability. Common genetic variation plays an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this devastating disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.