SummaryBET inhibitors (BETi) target bromodomain-containing proteins and are currently being evaluated as anti-cancer agents. We find that maximal therapeutic effects of BETi in a Myc-driven B cell lymphoma model required an intact host immune system. Genome-wide analysis of the BETi-induced transcriptional response identified the immune checkpoint ligand Cd274 (Pd-l1) as a Myc-independent, BETi target-gene. BETi directly repressed constitutively expressed and interferon-gamma (IFN-γ) induced CD274 expression across different human and mouse tumor cell lines and primary patient samples. Mechanistically, BETi decreased Brd4 occupancy at the Cd274 locus without any change in Myc occupancy, resulting in transcriptional pausing and rapid loss of Cd274 mRNA production. Finally, targeted inhibition of the PD-1/PD-L1 axis by combining anti-PD-1 antibodies and the BETi JQ1 caused synergistic responses in mice bearing Myc-driven lymphomas. Our data uncover an interaction between BETi and the PD-1/PD-L1 immune-checkpoint and provide mechanistic insight into the transcriptional regulation of CD274.
Dozens of genes contribute to the vast variation in human pigmentation. Many of these encode proteins that localize to the melanosome, the lysosome-related organelle that synthesizes pigment, but have unclear functions
1
,
2
. Here, we describe the MelanoIP method for rapidly isolating melanosomes and profiling their labile metabolite contents. We use it to study MFSD12, a transmembrane protein of unknown molecular function that when suppressed causes darker pigmentation in mice and humans
3
,
4
. We find that MFSD12 is required to maintain normal levels of cystine, the oxidized dimer of cysteine, in melanosomes, and to produce cysteinyldopas, the precursors of pheomelanin synthesis made in melanosomes via cysteine oxidation
5
,
6
. Tracing and biochemical analyses show that MFSD12 is necessary for the import of cysteine into melanosomes, and, in non-pigmented cells, lysosomes. Indeed, loss of MFSD12 reduced the accumulation of cystine in lysosomes of fibroblasts from patients with cystinosis, a lysosomal storage disease caused by inactivation of the lysosomal cystine exporter CTNS (Cystinosin)
7
–
9
. Thus, MFSD12 is an essential component of the long-sought cysteine importer for melanosomes and lysosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.