Reindeer herding probably developed during the Late Iron Age onwards and is still an important part of the subsistence and culture of many peoples in northern Eurasia. However, despite the importance of this husbandry in the history of these Arctic people, the period and place of the origin as well as the spread of domestic reindeer is still highly debated. Besides the existence of different breeding methods in these territories, identifying domesticated individuals in the archaeological record is complicated because reindeers are considered to still be in the early phases of the domestication process. Indeed, the traditional morphological markers used in zooarchaeology to decipher the domestication syndrome are hardly perceptible in these early stages. In this work, we propose solutions for identifying domestic reindeer bones using 3D geometric morphometrics on isolated elements from the long bones of the forelimb (i.e. humerus, radio-ulna and metacarpal). These bones are important to understand both the feeding behaviour and the mobility of reindeer, and the potential effect of load-carrying or draught in the case of domestic reindeer. We analysed 123 modern specimens from Fennoscandia, including the two interbreeding subspecies currently present in these territories: mountain reindeer (
Rangifer tarandus tarandus
) and forest reindeer (
R.t. fennicus
); and where the sex and the lifestyle were known (i.e. free-ranging, racing or draught and captive individuals). A good level of discrimination between the size and shape variables of the bones of the forelimb was found among both subspecies and sexes. Moreover, individuals bred in captivity had smaller bone elements and a thinner and more slender morphology than free-ranging individuals. This demonstrates that the long bones of the forelimb can provide information on changes in feeding and locomotor behaviour prompted by the domestication process, like control and/or reduction of mobility and food of individual reindeer by humans. This also demonstrates that analysis in 3D geometric morphometrics is useful in detecting reindeer incipient domestication markers. Our results can be used by archaeologists to trace the early stages of domestication from fossil reindeer remains, and aid in reconstructing the socio-economic changes of past Arctic populations over time.
For centuries, reindeer herding has been an integral part of the subsistence and culture among the Sámi of northern Fennoscandia. Despite the importance of this husbandry in their history, the timing and details of early reindeer domestication are still highly debated. Indeed, identifying domesticated individuals in the archaeological record remains complicated because reindeer are still considered to be in the early phases of the domestication process. In this work, we propose solutions for identifying domestic individuals using 3D geometric morphometrics on isolated elements from the long bones of the hindlimb in modern reindeer populations. These bones are important for understanding both the mobility of reindeer and the effect of load carrying or draught. A good level of distinction between the size and shape variables of these bones was found among subspecies, sex and lifestyles. This demonstrates that the long bones of the hindlimb can provide information on changes in locomotor behaviour induced by the domestication process, such as control and reduction of reindeer mobility by humans. This also demonstrates that analysis in geometric morphometrics is useful for exploring the use of draught reindeer in early Sámi reindeer herding and the implications for understanding reindeer domestication and early reindeer herding strategies.
A stable isotope investigation of a large Medieval population buried in Iin Hamina, northern Finland, has been used to reconstruct palaeodiet. Iin Hamina is situated approximately 30 km away from the modern city Oulu, in close proximity to the Bothnian Bay coast and the river Ii. The material used in this study is human skeletal material from an Iin Hamina cemetery dated as 15 to 17th centuries AD and animal bones excavated in Northern Ostrobothnia from pre-industrial contexts. Stable isotope analysis of well-preserved collagen indicate that both freshwater and marine fish was the dominant protein source for the people buried at the Iin Hamina cemetery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.