Mutational characterisation in multiple myeloma (MM) currently relies on bone marrow (BM) biopsy, which fails to capture the putative spatial and genetic heterogeneity of this multifocal disease. Analysis of plasma (PL)-derived circulating free tumour DNA (ctDNA) as an adjunct to BM biopsy, for mutational characterisation and tracking disease progression, was evaluated. Paired BM MM cell DNA and ctDNA from 33 relapsed/refractory (RR) and 15 newly diagnosed (ND) patients were analysed for KRAS, NRAS, BRAF and TP53 mutations using the OnTarget Mutation Detection (OMD) platform. OMD detected 128 mutations (PL=31, BM=59, both=38) indicating the presence of PL mutations (54%). A higher frequency of PL-only mutations was detected in RR patients than ND (27.2% vs 6.6%, respectively), authenticating the existence of spatial and genetic heterogeneity in advanced disease. Activating RAS mutations were more highly prevalent than previously described with 69% harboring at least one RAS mutation. Sequential ctDNA quantitation with droplet digital PCR through longitudinal PL tracking of specific clones in seven patients demonstrated changes in fractional abundance of certain clones reflective of the disease status. We conclude that ctDNA analysis as an adjunct to BM biopsy represents a noninvasive and holistic strategy for improved mutational characterisation and therapeutic monitoring of MM.
Abbreviations:Histone deacetylases (HDAC) control gene expression through their ability to acetylate proteins, thereby influencing a diverse range of cellular functions. Class I HDAC (HDAC1-3 and 8) and HDAC6 are predominantly upregulated in malignancies and their altered expression in some cancers has a significant prognostic implication. The expression and prognostic consequence of dysregulated Class I HDAC and HDAC6, key players in multiple myeloma (MM), are unknown. This study hypothesized that HDAC are dysregulated in MM and patients with high expression have significantly poorer prognostic outcomes. Quantitative PCR for 11 HDAC (Class I, II, and IV) was performed in genetically heterogeneous human myeloma cell lines (HMCL) and primary MM and compared to normal plasma cells (PC). In HMCL, HDAC1-3 and 8 (Class I), and HDAC5 and HDAC10 (Class II) were significantly upregulated compared to normal PC. In primary MM, the median expression level of all of the HDAC, except HDAC1 and HDAC11, were elevated when compared to normal PC. Patients with higher levels of HDAC1-3, HDAC4, HDAC6, and HDAC11 transcripts demonstrated a significantly shorter progression-free survival (PFS). Immunohistochemical staining for HDAC1 and HDAC6 on bone marrow trephines from a uniformly treated cohort of transplant eligible MM patients revealed that HDAC1 protein was detectable in most patients and that higher levels of MM cell HDAC1 protein expression (90 % versus 20 % MM cell positivity) correlated with both shorter PFS (P D 0 .07) and shorter overall survival (P D 0 .003). Conversely, while the majority of patients expressed HDAC6, there was no correlation between HDAC6 levels and patient outcome. Together, these results indicate that overexpression of Class I HDAC, particularly HDAC1, is associated with poor prognosis in MM.
Multiple myeloma (MM) is a heterogeneous plasma cell disorder characterized by genetic abnormalities, including chromosomal translocations, deletions, duplications and genetic mutations. Translocations involving the immunoglobulin heavy chain region at chromosome 14q32 are observed in approximately 40% of patients with MM. Translocation of oncogenes into this region may lead to their increased expression, contributing to disease initiation, disease progression and therapeutic resistance. The t(4;14) translocation is associated with upregulation of the fibroblast growth factor receptor 3 (FGFR3) and the myeloma SET domain protein. Patients with t(4;14) demonstrate an overall poor prognosis that is only partially mitigated by the use of the novel agents bortezomib and lenalidomide; as such, an unmet medical need remains for patients with this aberration. Preclinical studies of inhibitors of FGFR3 have shown promise in t(4;14) MM, and these studies have led to the initiation of clinical trials. Data from these trials will help to determine the clinical utility of FGFR3 inhibitors for patients with t(4;14) MM and may pave the way for personalized medicine in patients with this incurable disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.