ABSTRACT. The current study investigates the feasibility of using texture analysis to quantify the heterogeneity of lesion enhancement kinetics in order to discriminate malignant from benign breast lesions. A total of 82 biopsy-proven breast lesions (51 malignant, 31 benign), originating from 74 women subjected to dynamic contrastenhanced magnetic resonance imaging (DCE-MRI) were analysed. Pixel-wise analysis of DCE-MRI lesion data was performed to generate initial enhancement, post-initial enhancement and signal enhancement ratio (SER) parametric maps; these maps were subsequently subjected to co-occurrence matrix texture analysis. The discriminating ability of texture features extracted from each parametric map was investigated using a least-squares minimum distance classifier and further compared with the discriminating ability of the same texture features extracted from the first post-contrast frame. Selected texture features extracted from the SER map achieved an area under receiver operating characteristic curve of 0.922 ¡ 0.029, a performance similar to post-initial enhancement map features (0.906 ¡ 0.032) and statistically significantly higher than for initial enhancement map (0.767 ¡ 0.053) and first post-contrast frame (0.756 ¡ 0.060) features. Quantifying the heterogeneity of parametric maps that reflect lesion washout properties could contribute to the computer-aided diagnosis of breast lesions in DCE-MRI. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) significantly complements mammography and is characterised by its high sensitivity in detecting breast cancer. However, its specificity in distinguishing malignant from benign lesions is highly varied: reported values range from 37 up to 90% [1]. This variation is mainly due to the variety of image acquisition protocols and interpretation schemes adopted in clinical practice [2].Diagnostic criteria in DCE-MRI of breast masses [3, 4] include assessment of morphological features such as lesion shape, margin and enhancement homogeneity (internal architecture), as well as analysis/assessment of signal intensity-time curves generated from manually selected regions of interest (ROIs) within the lesion area. The analysis of signal intensity-time curves can be performed qualitatively (i.e. visual inspection of the curve shape [5,6]), by means of empirical parameters (e.g. relative enhancement, time-to-peak enhancement, washout ratio [7]) or quantitatively through pharmacokinetic modelling techniques [8].The subjective selection of ROI within the lesion accounts for the increased intra-and interobserver variability in the interpretation of lesion enhancement kinetics and for the discrepancy of reported findings [9,10]. While the selection of an ROI that captures the entire lesion is less subjective [11], it provides average enhancement kinetics estimates and completely ignores the heterogeneity of tumour vascular characteristics, which is diagnostically important [12]. Pixel-wise analysis of enhancement kinetics (based either on pharmacokinetic ...
The current study investigates texture properties of the tissue surrounding microcalcification (MC) clusters on mammograms for breast cancer diagnosis. The case sample analyzed consists of 85 dense mammographic images, originating from the Digital Database for Screening Mammography. Mammograms analyzed contain 100 subtle MC clusters (46 benign and 54 malignant). The tissue surrounding MCs is defined on original and wavelet decomposed images, based on a redundant discrete wavelet transform. Gray-level texture and wavelet coefficient texture features at three decomposition levels are extracted from surrounding tissue regions of interest (ST-ROIs). Specifically, gray-level first-order statistics, gray-level cooccurrence matrices features, and Laws' texture energy measures are extracted from original image ST-ROIs. Wavelet coefficient first-order statistics and wavelet coefficient cooccurrence matrices features are extracted from subimages ST-ROIs. The ability of each feature set in differentiating malignant from benign tissue is investigated using a probabilistic neural network. Classification outputs of most discriminating feature sets are combined using a majority voting rule. The proposed combined scheme achieved an area under receiver operating characteristic curve ( A(z)) of 0.989. Results suggest that MCs' ST texture analysis can contribute to computer-aided diagnosis of breast cancer.
Diagnosis of microcalcifications (MCs) is challenged by the presence of dense breast parenchyma, resulting in low specificity values and thus in unnecessary biopsies. The current study investigates whether texture properties of the tissue surrounding MCs can contribute to breast cancer diagnosis. A case sample of 100 biopsy-proved MC clusters (46 benign, 54 malignant) from 85 dense mammographic images, included in the Digital Database for Screening Mammography, was analysed. Regions of interest (ROIs) containing the MCs were pre-processed using a wavelet-based contrast enhancement method, followed by local thresholding to segment MCs; the segmented MCs were excluded from original image ROIs, and the remaining area (surrounding tissue) was subjected to texture analysis. Four categories of textural features (first order statistics, co-occurrence matrices features, run length matrices features and Laws' texture energy measures) were extracted from the surrounding tissue. The ability of each feature category in discriminating malignant from benign tissue was investigated using a k-nearest neighbour (kNN) classifier. An additional classification scheme was performed by combining classification outputs of three textural feature categories (the most discriminating ones) with a majority voting rule. Receiver operating characteristic (ROC) analysis was conducted for classifier performance evaluation of the individual textural feature categories and of the combined classification scheme. The best performance was achieved by the combined classification scheme yielding an area under the ROC curve (A(z)) of 0.96 (sensitivity 94.4%, specificity 80.0%). Texture analysis of tissue surrounding MCs shows promising results in computer-aided diagnosis of breast cancer and may contribute to the reduction of unnecessary biopsies.
Identification and characterization of diffuse parenchyma lung disease (DPLD) patterns challenges computer-aided schemes in computed tomography (CT) lung analysis. In this study, an automated scheme for volumetric quantification of interstitial pneumonia (IP) patterns, a subset of DPLD, is presented, utilizing a multidetector CT (MDCT) dataset. Initially, lung-field segmentation is achieved by 3-D automated gray-level thresholding combined with an edge-highlighting wavelet preprocessing step, followed by a texture-based border refinement step. The vessel tree volume is identified and removed from lung field, resulting in lung parenchyma (LP) volume. Following, identification and characterization of IP patterns is formulated as a three-class pattern classification of LP into normal, ground glass, and reticular patterns, by means of k-nearest neighbor voxel classification, exploiting 3-D cooccurrence features. Performance of the proposed scheme in indentifying and characterizing ground glass and reticular patterns was evaluated by means of volume overlap (ground glass: 0.734 +/- 0.057, reticular: 0.815 +/- 0.037), true-positive fraction (ground glass: 0.638 +/- 0.055, reticular: 0.942 +/- 0.023) and false-positive fraction (ground glass: 0.361 +/- 0.027, reticular: 0.147 +/- 0.032) on five MDCT scans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.