The new era of the Internet of Things (IoT) provides the space where novel applications will play a significant role in people's daily lives through the adoption of multiple services that facilitate everyday activities. The huge volumes of data produced by numerous IoT devices make the adoption of analytics imperative to produce knowledge and support efficient decision making. In this setting, one can identify two main problems, i.e., the time required to send the data to Cloud and wait for getting the final response and the distributed nature of data collection. Edge Computing (EC) can offer the necessary basis for storing locally the collected data and provide the required analytics on top of them limiting the response time. In this paper, we envision multiple edge nodes where data are stored being the subject of analytics queries. We propose a methodology for allocating queries, defined by end users or applications, to the appropriate edge nodes in order to save time and resources in the provision of responses. By adopting our scheme, we are able to ask the execution of queries only from a sub-set of the available nodes avoiding to demand processing activities that will lead to an increased response time. Our model envisions the allocation to specific epochs and manages a batch of queries at a time. We present the formulation of our problem and the proposed solution while providing results of an extensive evaluation process that reveals the pros and cons of the proposed model.
Nowadays, we are witnessing the advent of the Internet of Things (IoT) with numerous devices performing interactions between them or with their environment. The huge number of devices leads to huge volumes of data that demand the appropriate processing. The “legacy” approach is to rely on Cloud where increased computational resources can realize any desired processing. However, the need for supporting real-time applications requires a reduced latency in the provision of outcomes. Edge Computing (EC) comes as the “solver” of the latency problem. Various processing activities can be performed at EC nodes having direct connection with IoT devices. A number of challenges should be met before we conclude a fully automated ecosystem where nodes can cooperate or understand their status to efficiently serve applications. In this article, we perform a survey of the relevant research activities towards the vision of Edge Mesh (EM), i.e., a “cover” of intelligence upon the EC. We present the necessary hardware and discuss research outcomes in every aspect of EC/EM nodes functioning. We present technologies and theories adopted for data, tasks, and resource management while discussing how machine learning and optimization can be adopted in the domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.