BackgroundAlthough Escherichia coli is one of the best studied model organisms, a comprehensive understanding of its gene regulation is not yet achieved. There exist many approaches to reconstruct regulatory interaction networks from gene expression experiments. Mutual information based approaches are most useful for large-scale network inference.ResultsWe used a three-step approach in which we combined gene regulatory network inference based on directed information (DTI) and sequence analysis. DTI values were calculated on a set of gene expression profiles from 19 time course experiments extracted from the Many Microbes Microarray Database. Focusing on influences between pairs of genes in which one partner encodes a transcription factor (TF) we derived a network which contains 878 TF - gene interactions of which 166 are known according to RegulonDB. Afterward, we selected a subset of 109 interactions that could be confirmed by the presence of a phylogenetically conserved binding site of the respective regulator. By this second step, the fraction of known interactions increased from 19% to 60%. In the last step, we checked the 44 of the 109 interactions not yet included in RegulonDB for functional relationships between the regulator and the target and, thus, obtained ten TF - target gene interactions. Five of them concern the regulator LexA and have already been reported in the literature. The remaining five influences describe regulations by Fis (with two novel targets), PhdR, PhoP, and KdgR. For the validation of our approach, one of them, the regulation of lipoate synthase (LipA) by the pyruvate-sensing pyruvate dehydrogenate repressor (PdhR), was experimentally checked and confirmed.ConclusionsWe predicted a set of five novel TF - target gene interactions in E. coli. One of them, the regulation of lipA by the transcriptional regulator PdhR was validated experimentally. Furthermore, we developed DTInfer, a new R-package for the inference of gene-regulatory networks from microarrays using directed information.
BackgroundThe pyruvate dehydrogenase regulator protein (PdhR) of Escherichia coli acts as a transcriptional regulator in a pyruvate dependent manner to control central metabolic fluxes. However, the complete PdhR regulon has not yet been uncovered. To achieve an extended understanding of its gene regulatory network, we combined large-scale network inference and experimental verification of results obtained by a systems biology approach.Results22 new genes contained in two operons controlled by PdhR (previously only 20 regulatory targets in eight operons were known) were identified by analysing a large-scale dataset of E. coli from the Many Microbes Microarray Database and novel expression data from a pdhR knockout strain, as well as a PdhR overproducing strain. We identified a regulation of the glycolate utilization operon glcDEFGBA using chromatin immunoprecipitation and gel shift assays. We show that this regulation could be part of a cross-induction between genes necessary for acetate and pyruvate utilisation controlled through PdhR. Moreover, a link of PdhR regulation to the replication machinery of the cell via control of the transcription of the dcw-cluster was verified in experiments. This augments our knowledge of the functions of the PdhR-regulon and demonstrates its central importance for further cellular processes in E. coli.ConclusionsWe extended the PdhR regulon by 22 new genes contained in two operons and validated the regulation of the glcDEFGBA operon for glycolate utilisation and the dcw-cluster for cell division proteins experimentally. Our results provide, for the first time, a plausible regulatory link between the nutritional status of the cell and cell replication mediated by PdhR.
MtfA of Escherichia coli (formerly YeeI) was previously identified as a regulator of the phosphoenolpyruvate (PEP)-dependent:glucose phosphotransferase system. MtfA homolog proteins are highly conserved, especially among beta- and gammaproteobacteria. We determined the crystal structures of the full-length MtfA apoenzyme from Klebsiella pneumoniae and its complex with zinc (holoenzyme) at 2.2 and 1.95 Å, respectively. MtfA contains a conserved H 149 E 150 XXH 153 +E 212 +Y 205 metallopeptidase motif. The presence of zinc in the active site induces significant conformational changes in the region around Tyr205 compared to the conformation of the apoenzyme. Additionally, the zinc-bound MtfA structure is in a self-inhibitory conformation where a region that was disordered in the unliganded structure is now observed in the active site and a nonproductive state of the enzyme is formed. MtfA is related to the catalytic domain of the anthrax lethal factor and the Mop protein involved in the virulence of Vibrio cholerae , with conservation in both overall structure and in the residues around the active site. These results clearly provide support for MtfA as a prototypical zinc metallopeptidase (gluzincin clan).
The glucose-phosphotransferase system (PTS) in Escherichia coli K-12 is a complex sensory and regulatory system. In addition to its central role in glucose uptake, it informs other global regulatory networks about carbohydrate availability and the physiological status of the cell. The expression of the ptsG gene encoding the glucose-PTS transporter EIICB Glc is primarily regulated via the repressor Mlc, whose inactivation is glucose dependent. During transport of glucose and dephosphorylation of EIICB Glc , Mlc binds to the B domain of the transporter, resulting in derepression of several Mlc-regulated genes. In addition, Mlc can also be inactivated by the cytoplasmic protein MtfA in a direct protein-protein interaction. In this study, we identified the binding site for Mlc in the carboxy-terminal region of MtfA by measuring the effect of mutated MtfAs on ptsG expression. In addition, we demonstrated the ability of MtfA to inactivate an Mlc super-repressor, which cannot be inactivated by EIICB Glc , by using in vivo titration and gel shift assays. Finally, we characterized the proteolytic activity of purified MtfA by monitoring cleavage of amino 4-nitroanilide substrates and show Mlc's ability to enhance this activity. Based on our findings, we propose a model of MtfA as a glucose-regulated peptidase activated by cytoplasmic Mlc. Its activity may be necessary during the growth of cultures as they enter the stationary phase. This proteolytic activity of MtfA modulated by Mlc constitutes a newly identified PTS output signal that responds to changes in environmental conditions. D espite the fact that Escherichia coli K-12 has been an important model organism for many decades, the function of Ͼ20% of all putative open reading frames in its genome remains unknown. Moreover, in many cases, no obvious sequence similarities with previously characterized proteins exist. The mtfA gene (formerly named yeeI), a monocistronic gene located at 44.1 min in the E. coli chromosome, has clearly belonged to this group. Intensive sequence similarity searches revealed that orthologs of MtfA (mnemonic for Mlc titration factor A) exist in more than 100 proteobacteria of the alpha, beta, and gamma subdivisions. In a previous report (2), we were able to demonstrate that E. coli MtfA is a cytoplasmic protein that binds to the carboxy-terminal part of the Mlc repressor protein (mnemonic for "making large colonies" [gene, dgsA]) with a very high affinity. Mlc is one of the global regulators of carbohydrate metabolism in E. coli and is especially involved in the regulation of the ptsG gene expression, which encodes the glucose transporter EIICB Glc . The EIICB Glc together with the cytoplasmic protein EIIA Glc , encoded by the crr gene (as part of the ptsHI-crr operon), forms the glucosespecific phosphoenolpyruvate (PEP)-dependent carbohydratephosphotransferase system (glucose-PTS). Both proteins take part in a phosphorylation cascade, which begins with an autophosphorylation reaction of the so-called enzyme I (EI; gene, ptsI) at the expense...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.