High-molecular weight aggregates such as antibody dimers and other side products derived from incorrect light or heavy chain association typically represent critical product-related impurities for bispecific antibody formats.In this study, an approach employing ultra-pressure liquid chromatography size-exclusion separation combined with native electrospray ionization mass spectrometry for the simultaneous formation, identification and quantification of size variants in recombinant antibodies was developed. Samples exposed to storage and elevated temperature(s) enabled the identification of various bispecific antibody size variants. This test system hence allowed us to study the variants formed during formulation and bio-process development, and can thus be transferred to quality control units for routine in-process control and release analytics. In addition, native SEC-UV/MS not only facilitates the detailed analysis of low-abundant and non-covalent size variants during process characterization/validation studies, but is also essential for the SEC-UV method validation prior to admission to the market.
Determination of the impact of individual antibody glycoforms on FcɣRIIIa affinity, and consequently antibody-dependent cell-mediated cytotoxicity (ADCC) previously required high purity glycoengineering. We hyphenated FcɣRIIIa affinity chromatography to mass spectrometry, which allowed direct affinity comparison of glycoforms of intact monoclonal antibodies. The approach enabled reproduction and refinement of known glycosylation effects, and insights on afucosylation pairing as well as on lowabundant, unstudied glycoforms. Our method greatly improves the understanding of individual glycoform structure-function relationships. Thus, it is highly relevant for assessing Fc-glycosylation critical quality attributes related to ADCC.
The aim of this study was to characterize the product variants of a therapeutic T-cell bispecific humanized monoclonal antibody (TCB Mab, ∼200 kDa, asymmetric) and to develop an online cation-exchange chromatography native electrospray mass spectrometry method (CEC-UV-MS) for direct TCB Mab charge variant monitoring during bioprocess and formulation development. For the identification and functional evaluation of the diverse and complex TCB Mab charge variants, offline fractionation combined with comprehensive analytical testing was applied. The offline fractionation of abundant product variant peaks enabled identification of coeluting acid charge variants such as asparagine deamidation, primary and secondary Fab glycosylation (with and without sialic acid), and the presence of O-glycosylation in the G4S-linker region. Consequently, a new nonconsensus N-glycosylation motif (N-338-FG) in the heavy chain CDR region was discovered. Functional evaluation by cellbased potency testing demonstrated a clear and negative impact of both asparagine deamidations, whereas the O-glycosylation did not affect the TCB Mab biological activity. We established an online native CEC-UV-MS method, with an ammonium acetate buffer and pH gradient, to directly monitor the TCB Mab charge variants. All abundant chemical degradations and post-translational amino acid modifications already identified by offline fraction experiments and liquid chromatography mass spectrometry peptide mapping could also be monitored by the online CEC-UV-MS method. The herein reported online native CEC-UV-MS methodology represents a complementary or even alternative approach for multiattribute monitoring of biologics, offering multiple benefits, including increased throughput and reduced sample handling and intact protein information in the near-native state.
We report on the online coupling of FcRn affinity liquid chromatography (LC) with electrospray ionization mass spectrometry (ESI-MS) in native conditions to study the influence of modifications on the interaction of recombinant mAbs with the immobilized FcRn receptor domain. The analysis conditions were designed to fit the requirements of both affinity LC and ESI-MS. The mobile phase composition was optimized to maintain the proteins studied in native conditions and enable sharp pH changes in order to mimic properly IgGs Fc domain/FcRn receptor interaction. Mobile phase components needed to be sufficiently volatile to achieve native MS analysis. MS data demonstrated the conservation of the pseudonative form of IgGs and allowed identification of the separated variants. Native FcRn affinity LC-ESI-MS was performed on a therapeutic mAb undergoing various oxidation stress. Native MS detection was used to determine the sample oxidation level. Lower retention was observed for mAbs oxidized variants compared to their intact counterparts indicating decreased affinities for the receptor. This methodology proved to be suitable to identify and quantify post-translational modifications at native protein level in order to correlate their influence on the binding to the FcRn receptor. Native FcRn affinity LC-ESI-MS can tremendously reduce the time required to assess the biological relevance of the IgG microheterogeneities thus providing valuable information for biopharmaceutical research and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.