Autophagy is a catabolic pathway that sequesters undesired cellular material into autophagosomes for delivery to lysosomes for degradation. A key step in the pathway is the covalent conjugation of the ubiquitin-related protein Atg8 to phosphatidylethanolamine (Atg8-PE) in autophagic membranes by a complex consisting of Atg16 and the Atg12-Atg5 conjugate. Atg8 controls the expansion of autophagic precursor membranes, but the underlying mechanism remains unclear. Here, we reconstitute Atg8 conjugation on giant unilamellar vesicles and supported lipid bilayers. We found that Atg8-PE associates with Atg12-Atg5-Atg16 into a membrane scaffold. By contrast, scaffold formation is counteracted by the mitochondrial cargo adaptor Atg32 through competition with Atg12-Atg5 for Atg8 binding. Atg4, previously known to recycle Atg8 from membranes, disassembles the scaffold. Importantly, mutants of Atg12 and Atg16 deficient in scaffold formation in vitro impair autophagy in vivo. This suggests that autophagic scaffolds are critical for phagophore biogenesis and thus autophagy.
SUMMARYLight sheet microscopy techniques, such as selective plane illumination microscopy (SPIM), are ideally suited for time-lapse imaging of developmental processes lasting several hours to a few days. The success of this promising technology has mainly been limited by the lack of suitable techniques for mounting fragile samples. Embedding zebrafish embryos in agarose, which is common in conventional confocal microscopy, has resulted in severe growth defects and unreliable results. In this study, we systematically quantified the viability and mobility of zebrafish embryos mounted under more suitable conditions. We found that tubes made of fluorinated ethylene propylene (FEP) filled with low concentrations of agarose or methylcellulose provided an optimal balance between sufficient confinement of the living embryo in a physiological environment over 3 days and optical clarity suitable for fluorescence imaging. We also compared the effect of different concentrations of Tricaine on the development of zebrafish and provide guidelines for its optimal use depending on the application. Our results will make light sheet microscopy techniques applicable to more fields of developmental biology, in particular the multiview long-term imaging of zebrafish embryos and other small organisms. Furthermore, the refinement of sample preparation for in toto and in vivo imaging will promote other emerging optical imaging techniques, such as optical projection tomography (OPT).
We introduce a novel, simple method to measure sinking velocity of particles and aggregates in roller tanks. Using this noninvasive method, it is possible to follow changes in sinking velocities on the same aggregates during time and to make paired measurements of aggregate sinking velocity and composition. Particles and aggregates are video recorded in roller tanks, and their sinking velocity is derived from the orbital trajectories. This new method is compared with three other methods (using roller tanks, a vertical flow system, and a sedimentation column), which have not previously been inter-calibrated. Agar spheres and diatom aggregates were used as model particles in all experimental systems. No method showed significantly different sinking velocities of agar spheres compared with those calculated by theory. Paired measurements showed that sinking velocities from 70 to 700 m d -1 were linearly correlated between different methods. Highest sinking velocities were measured in a sedimentation column followed by those measured in roller tanks and in the vertical flow system, respectively. The average difference of sinking velocity measured with the different methods ranged from 8% to 11% for agar spheres, and up to 20% for diatom aggregates.
The accumulation of protein aggregates is involved in the onset of many neurodegenerative diseases. Aggrephagy is a selective type of autophagy that counteracts neurodegeneration by degrading such aggregates. In this study, we found that LC3C cooperates with lysosomal TECPR1 to promote the degradation of disease-related protein aggregates in neural stem cells. The N-terminal WD-repeat domain of TECPR1 selectively binds LC3C which decorates matured autophagosomes. The interaction of LC3C and TECPR1 promotes the recruitment of autophagosomes to lysosomes for degradation. Augmented expression of TECPR1 in neural stem cells reduces the number of protein aggregates by promoting their autophagic clearance, whereas knockdown of LC3C inhibits aggrephagy. The PH domain of TECPR1 selectively interacts with PtdIns(4)P to target TECPR1 to PtdIns(4)P containing lysosomes. Exchanging the PH against a tandem-FYVE domain targets TECPR1 ectopically to endosomes. This leads to an accumulation of LC3C autophagosomes at endosomes and prevents their delivery to lysosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.