Metabolism of ASOs is based on exonucleases degradation of subsequent nucleotides, with the activity of endonucleases in the case of some modifications.
The aim of the present investigation was the analysis and identification of antisense oligonucleotide metabolism products after incubation with human liver microsomes regarding four different oligonucleotide modifications. Separation and detection methods based on the use of liquid chromatography coupled with quadrupole time-of-flight mass spectrometry were developed for this purpose. Firstly, the optimization of mass spectrometer parameters was done to select those which ensure the highest possible sensitivity of oligonucleotide analysis. This step was conducted for two chromatographic modes—ion pair chromatography and hydrophilic interaction liquid chromatography—due to their common application in oligonucleotide analysis. Based on sensitivity results, ion pair chromatography coupled with mass spectrometry was selected for the separation of model oligonucleotide mixtures in order to verify its selectivity for N-deleted metabolite separation. Next, the developed method was applied in the examination of oligonucleotides in vitro metabolism. First, wide optimization of incubation parameters was conducted including the concentration of the reaction buffer components. Obtained results indicated that both 3′-exonucleases and 5′-exonucleases contributed to the biotransformation of oligonucleotides. Moreover, it may be concluded that the number of metabolites depends on oligonucleotide modification and consequently its resistance to enzymatic attack. Thus, the number of the oligonucleotide metabolites decreased with the decrease of the resultant polarity of oligonucleotide caused by chemical modification.
The presented studies aimed to develop a new and simple extraction method based on hydrophilic interaction for antisense oligonucleotides with different modifications. For this purpose, solid-phase extraction cartridges with unmodified silica were used. All extraction steps were performed by utilizing water, acetonitrile, acetone or their mixtures. The results obtained show that a high content (95%) of organic solvent, used during sample loading, is critical to achieve a successful extraction, while elution with pure water allows effective oligonucleotides desorption. The recovery values were greater than 90% in the case of unmodified DNA, phosphorothioate, 2′-O-(2-methoxyethyl) and 2′-O-methyl oligonucleotides. For the mixture of phosphorothioate oligonucleotide and its two synthetic metabolites, the recovery values for the standard solutions were in the range of 70–75%, while for spiked human plasma, 45–50%. The developed method is simple, may be performed in a short time and requires simple solvents like water or acetonitrile/acetone, thus showing promise as an alternative to chaotropic salt-based or ion pair-based SPE methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.