There is a dire need for new compounds to combat antibiotic resistance: metal complexes might provide the solution. 906 metal complexes were evaluated against dangerous ESKAPE pathogens and found to have a higher hit-rate than organic molecules.
Metal anticancer agents are rapidly emerging as selective, potent therapeutics that exhibit anticancer activity by inducing endoplasmic reticulum stress.
Among Escherichia coli organisms isolated at St. Thomas's Hospital during the years 1990 to 1994, the frequency of resistance to amoxicillin-clavulanic acid (tested by disk diffusion in a ratio of 2:1) remained constant at about 5% of patient isolates (10 to 15% of the 41 to 45% that were amoxicillin resistant). Mechanisms of increased resistance were determined for 72 consecutively collected such amoxicillin-clavulanic acid-resistant isolates. MICs of the combination were 16-8 g/ml for 51 (71%) of these and >32-16 g/ml for the remainder. The predominant mechanism was hyperproduction of enzymes isoelectrically cofocusing with TEM-1 (-lactamase activities, >200 nmol of nitrocefin hydrolyzed per min per mg of protein) which was found in 44 isolates (61%); two isolates produced smaller amounts (approximately 150 nmol/min/mg) of such enzymes, and two isolates hyperproduced enzymes cofocusing with TEM-2. Eleven isolates produced enzymes cofocusing with OXA-1 -lactamase, which has previously been associated with resistance to amoxicillinclavulanic acid. Ten isolates produced increased amounts of chromosomal -lactamase, and four of these additionally produced TEM-1 or TEM-2. Three isolates produced inhibitor-resistant TEM-group enzymes. In one of the enzymes (pI, 5.4), the amino acid sequence change was Met-673Val, and thus the enzyme is identical to TEM-34. Another (pI, 5.4) had the substitution Met-673Ile and is identical to IRT-I67, which we propose now be given the designation TEM-40. The third (pI, 5.2) had the substitution Arg-2413Thr; this enzyme has not been reported previously and should be called TEM-41. The rarity and diversity of inhibitor-resistant TEM-group enzymes suggest that they are the result of spontaneous mutations that have not yet spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.