The soluble proteins in sieve tube exudate from Brassica napus plants were systematically analyzed by 1-DE and high-resolution 2-DE, partial amino acid sequence determination by MS/MS, followed by database searches. 140 proteins could be identified by their high similarity to database sequences (135 from 2-DE, 5 additional from 1-DE). Most analyzed spots led to successful protein identifications, demonstrating that Brassica napus, a close relative of Arabidopsis thaliana, is a highly suitable model plant for phloem research. None of the identified proteins was formerly known to be present in Brassica napus phloem, but several proteins have been described in phloem sap of other species. The data, which is discussed with respect to possible physiological importance of the proteins in the phloem, further confirms and substantially extends earlier findings and uncovers the presence of new protein functions in the vascular system. For example, we found several formerly unknown phloem proteins that are potentially involved in signal generation and transport, e.g., proteins mediating calcium and G-protein signaling, a set of RNA-binding proteins, and FLOWERING LOCUS T (FT) and its twin sister that might be key components for the regulation of flowering time.
Xylem sap from broccoli (Brassica oleracea L. cv. Calabrais), rape (Brassica napus L. cv. Drakkar), pumpkin (Cucurbita maxima Duch. cv. gelber Zentner) and cucumber (Cucumis sativus L. cv. Hoffmanns Giganta) was collected by root pressure exudation from the surface of cut stems of healthy, adult plants. Total protein concentrations were in the range of 100 microg ml(-1). One-dimensional gel electrophoresis (SDS-PAGE) resulted in 10-20 visible protein bands in a molecular mass range from 10 to 100 kDa. The main bands were cut out, digested with trypsin, and analysed using tandem mass spectrometry. Fifty bands resulted in amino acid sequence information that was used to perform database similarity searches. Sequences from 30 bands showed high homology to proteins present in databases. Among them, we found mostly peroxidases, but could also identify the lectin-like xylem protein XSP30, a glycine-rich protein, serine proteases, an aspartyl protease family protein, chitinases, and a lipid transfer protein-like polypeptide. Sequence analysis predicted apoplastic secretion signals for all database entries similar to the partial xylem protein sequences. This and the lack of cross-reactivity with phloem protein-specific antibodies suggest that the proteins really originate from the xylem and do not result from phloem contamination. Most of the highly similar proteins probably function in repair and defence reactions. Some of the most abundant proteins (peroxidases, chitinases, serine proteases) were present in xylem exudate of all species analysed, often in more than one band. This indicates an important basic role of these proteins in maintaining xylem function.
Cell-penetrating peptides (CPPs) have been extensively studied because of their ability to deliver various cargo molecules, which are often potential therapeutic agents. However, in most cases, the exact entry mechanism of CPPs is still unknown. In this study, we focused our attention on the membrane permeability sequence (MPS) peptide (AAVALLPAVLLALLAK) conjugated to analogues of a 5' mRNA cap. This unique RNA structure plays a pivotal role in eukaryotic gene expression and has a large therapeutic application potential. We validated the translocation abilities of conjugates across the membranes of giant unilamellar vesicles (GUVs) composed of POPC lipids by application of fluorescence microscopy. Translocation of the MPS peptide itself was observed in contrast to peptide conjugates containing mono- and dinucleotide cap analogues, indicating that even for such small cargos, passive translocation does not occur. However, membrane permeability was observed in the case of conjugated mononucleotides. Fluorescence lifetime microscopy (FLIM) of the C6-NBD-phospholipid revealed changes in lipid packing induced by a penetrating peptide. Our results support the usefulness of artificial membrane systems applied to elucidate membrane crossing mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.