Type 2 deiodinase (D2) is a selenoenzyme catalyzing the activation of T(4) to T(3). D2 activity/mRNA ratios are often low, suggesting that there is significant posttranscriptional regulation. The D2 mRNA in higher vertebrates is more than 6 kb, containing long 5' and 3' untranslated regions (UTRs). The D2 5'UTRs are greater than 600 nucleotides and contain 3-5 short open reading frames. These full-length 5'UTRs reduce the D2 translation efficiency approximately 5-fold. The inhibition by human D2 5'UTR is localized to a region containing the first short open reading frame encoding a tripeptide-MKG. This inhibition was abolished by mutating the AUG start codon and weakened by modification of the essential purine of the Kozak consensus. Deletion of the 3.7-kb 3'UTR of the chicken D2 mRNA increased D2 activity approximately 3.8-fold due to an increase in D2 mRNA half-life. In addition, alternatively spliced D2 mRNA transcripts similar in size to the major 6- to 7-kb D2 mRNAs but not encoding an active enzyme are present in both human and chicken tissues. Our results indicate that a number of factors reduce the D2 protein levels. These mechanisms, together with the short half-life of the protein, ensure limited expression of this key regulator of T(4) activation.
Thyroid hormone is essential for brain development. T(4) has to be converted to T(3) for efficient binding to thyroid hormone receptors. Type 2 deiodinase (D2) is the key enzyme that allows T(3) generation in the brain. To elucidate the onset and localization of T(3) production in the brain, we studied the changes of D2 activity, mRNA content, and the distribution of D2 mRNA in the brain of chicken embryos before and after the onset of thyroid function. D2 activity was detectable in the brain at all stages studied from embryonic day (E)7 to E15 and increased significantly with time. The wild-type chicken D2 transcript was detectable at all those stages by RT-PCR. The amount of D2 mRNA in the brain increased approximately 14-fold from E10 to E17 as assessed by Northern blot. Week D2 hybridization signal could be detected by in situ hybridization at E8 in cell clusters throughout the brain, and its intensity markedly increased to E15. Interestingly, no D2 expression was detected in hypothalamic tanycytes at these embryonic stages. However, D2 hybridization signal was observed in the wall of the third ventricle of adult chicken posterior to the rostral pole of the median eminence in the location typical for tanycytes, whereas D2 signal in other localizations was decreased throughout the brain. Our data suggest that D2 contributes to T(3) content of the developing chicken brain even before the onset of thyroid function. Furthermore, redistribution of D2 mRNA expression was observed during the development of the chicken brain.
Novel types of luciferase reporters, especially the synthetic (dCpG)Luciferase, can be more accurate to study T3-regulated gene expression than the classical firefly luciferase reporter. Renilla luciferase, a popular transfection control of dual luciferase assays, should be used with caution in conditions with T3 treatment.
Thyroid hormone (TH) signaling is a prerequisite of normal tissue function. Environmental pollutants with the potential to disrupt endocrine functions represent an emerging threat to human health and agricultural production. We used our Thyroid Hormone Action Indicator (THAI) mouse model to study the effects of tetrabromobisphenol A (TBBPA; 150 mg/bwkg/day orally for 6 days) and diclazuril (10.0 mg/bwkg/day orally for 5 days), a known and a potential hormone disruptor, respectively, on local TH economy. Tissue-specific changes of TH action were assessed in 90-day-old THAI mice by measuring the expression of a TH-responsive luciferase reporter in tissue samples and by in vivo imaging (14-day-long treatment accompanied with imaging on day 7, 14 and 21 from the first day of treatment) in live THAI mice. This was followed by promoter assays to elucidate the mechanism of the observed effects. TBBPA and diclazuril impacted TH action differently and tissue-specifically. TBBPA disrupted TH signaling in the bone and small intestine and impaired the global TH economy by decreasing the circulating free T4 levels. In the promoter assays, TBBPA showed a direct stimulatory effect on the hdio3 promoter, indicating a potential mechanism for silencing TH action. In contrast, diclazuril acted as a stimulator of TH action in the liver, skeletal muscle and brown adipose tissue without affecting the Hypothalamo-Pituitary-Thyroid axis. Our data demonstrate distinct and tissue-specific effects of TBBPA and diclazuril on local TH action and prove that the THAI mouse is a novel mammalian model to identify TH disruptors and their tissue-specific effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.