Abstract. Methane (CH4) is a potent greenhouse gas and plays a significant role in recent increasing global temperatures. The oceans are a natural source of methane contributing to atmospheric methane concentrations, yet our understanding of the oceanic methane cycle is poorly constrained. Accumulating evidence indicates that a significant part of oceanic CH4 is produced in oxygenated surface waters as a by-product of phytoplanktonic activity. This study focused on the subtropical North Atlantic Ocean (26∘ N, 80′ W and 26∘ N, 18′ W) where the distribution of dissolved CH4 concentrations and associated air–sea fluxes during winter 2020 were investigated. Water samples from 64 stations were collected from the upper water column up to depths of 400 m. The upper oxic mixed layer was oversaturated in dissolved CH4 with concentrations ranging 3–7 nmol L−1, with the highest concentrations of 7–10 nmol L−1 found to the east of the transect, consistent with other subtropical regions of the world's oceans. The high anomalies of dissolved CH4 were found to be associated with phosphate-depleted waters and regions where the abundance of the ubiquitous picocyanobacteria Synechococcus and Prochlorococcus were elevated. Although other phytoplanktonic phyla cannot be excluded, this suggests that cyanobacteria contribute to the release of CH4 in this region. The calculation of air–sea fluxes further confirmed the subtropical North Atlantic Ocean as a source of CH4. This study provides evidence to corroborate the key role that picocyanobacteria play in helping to explain the oversaturation of CH4 found in surface mixed layer of the open ocean, otherwise known as the “ocean methane paradox”.
Abstract. Methane (CH4) is the second most produced greenhouse gas after carbon dioxide, however the role of the open ocean in its natural cycle remains poorly constrained. Accumulating evidence indicates that a significant part of oceanic CH4 is produced in oxygenated surface waters as a by-product of phytoplanktonic activity. The subtropical North Atlantic Ocean between 26° N 80’W and 26° N 18’W was investigated for the distribution of dissolved CH4 concentrations and associated air-sea fluxes during winter 2020. Water samples from 64 stations were collected from the upper water column up to depths of 400 m. The upper oxic mixed-layer was oversaturated in dissolved CH4 with concentrations ranging between 3–7 nmol/l, with the highest values of 7–10 nmol/l found to the east of the transect, consistent with other subtropical regions of the world’s oceans. The high anomalies of dissolved CH4 appeared to be associated to phosphorus depleted waters and to a peak of regions of elevated phytoplankton abundance. Further investigations indicated a correlation between CH4 anomalies, phosphate depletion and the abundance of two ubiquitous pico-cyanobacteria, Synechococcus and Prochlorococcus, although other phytoplanktonic phyla cannot be excluded. The calculation of air-sea fluxes confirms the subtropical North Atlantic Ocean as a source of CH4, mainly produced by phytoplanktonic activity in surface waters.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.