It is often thought that learning algorithms that track the best solution, as opposed to converging to it, are important only on nonstationary problems. We present three results suggesting that this is not so. First we illustrate in a simple concrete example, the Black and White problem, that tracking can perform better than any converging algorithm on a stationary problem. Second, we show the same point on a larger, more realistic problem, an application of temporaldifference learning to computer Go. Our third result suggests that tracking in stationary problems could be important for metalearning research (e.g., learning to learn, feature selection, transfer). We apply a metalearning algorithm for step-size adaptation, IDBD (Sutton, 1992a), to the Black and White problem, showing that meta-learning has a dramatic long-term effect on performance whereas, on an analogous converging problem, meta-learning has only a small second-order effect. This small result suggests a way of eventually overcoming a major obstacle to meta-learning research: the lack of an independent methodology for task selection.
Constructing general knowledge by learning task-independent models of the world can help agents solve challenging problems. However, both constructing and evaluating such models remain an open challenge. The most common approaches to evaluating models is to assess their accuracy with respect to observable values. However, the prevailing reliance on estimator accuracy as a proxy for the usefulness of the knowledge has the potential to lead us astray. We demonstrate the conflict between accuracy and usefulness through a series of illustrative examples including both a thought experiment and an empirical example in Minecraft, using the General Value Function framework (GVF). Having identified challenges in assessing an agent’s knowledge, we propose an alternate evaluation approach that arises naturally in the online continual learning setting: we recommend evaluation by examining internal learning processes, specifically the relevance of a GVF’s features to the prediction task at hand. This paper contributes a first look into evaluation of predictions through their use, an integral component of predictive knowledge which is as of yet unexplored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.